首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cells of many embryonic tissues actively narrow in one dimension (convergence) and lengthen in the perpendicular dimension (extension). Convergence and extension are ubiquitous and important tissue movements in metazoan morphogenesis. In vertebrates, the dorsal axial and paraxial mesodermal tissues, the notochordal and somitic mesoderm, converge and extend. In amphibians as well as a number of other organisms where these movements appear, they occur by mediolateral cell intercalation, the rearrangement of cells along the mediolateral axis to produce an array that is narrower in this axis and longer in the anteroposterior axis. In amphibians, mesodermal cell intercalation is driven by bipolar, mediolaterally directed protrusive activity, which appears to exert traction on adjacent cells and pulls the cells between one another. In addition, the notochordal-somitic boundary functions in convergence and extension by 'capturing' notochordal cells as they contact the boundary, thus elongating the boundary. The prospective neural tissue also actively converges and extends parallel with the mesoderm. In contrast to the mesoderm, cell intercalation in the neural plate normally occurs by monopolar protrusive activity directed medially, towards the midline notoplate-floor-plate region. In contrast, the notoplate-floor-plate region appears to converge and extend by adhering to and being towed by or perhaps migrating on the underlying notochord. Converging and extending mesoderm stiffens by a factor of three or four and exerts up to 0.6 microN force. Therefore, active, force-producing convergent extension, the mechanism of cell intercalation, requires a mechanism to actively pull cells between one another while maintaining a tissue stiffness sufficient to push with a substantial force. Based on the evidence thus far, a cell-cell traction model of intercalation is described. The essential elements of such a morphogenic machine appear to be (i) bipolar, mediolaterally orientated or monopolar, medially directed protrusive activity; (ii) this protrusive activity results in mediolaterally orientated or medially directed traction of cells on one another; (iii) tractive protrusions are confined to the ends of the cells; (iv) a mechanically stable cell cortex over the bulk of the cell body which serves as a movable substratum for the orientated or directed cell traction. The implications of this model for cell adhesion, regulation of cell motility and cell polarity, and cell and tissue biomechanics are discussed.  相似文献   

2.
We compared the type and patterning of morphogenic cell behaviors driving convergent extension of the Xenopus neural plate in the presence and absence of persistent vertical signals from the mesoderm by videorecording explants of deep neural tissue with involuted mesoderm attached and of deep neural tissue alone. In deep neural-over-mesoderm explants, neural plate cells express monopolar medially directed motility and notoplate cells express randomly oriented motility, two new morphogenic cell behaviors. In contrast, in deep neural explants (without notoplate), all cells express bipolar mediolateral cell motility. Deep neural-over-mesoderm and deep neural explants also differ in degree of neighbor exchange during mediolateral cell intercalation. In deep neural-over-mesoderm explants, cells intercalate conservatively, whereas in deep neural explants cells intercalate more promiscuously. Last, in both deep neural-over-mesoderm and deep neural explants, morphogenic cell behaviors differentiate in an anterior-to-posterior and lateral-to-medial progression. However, in deep neural-over-mesoderm explants, morphogenic behaviors first differentiate in intervals along the anteroposterior axis, whereas in deep neural explants, morphogenic behaviors differentiate continuously from the anterior end of the tissue posteriorly. These results describe new morphogenic cell behaviors driving neural convergent extension and also define roles for signals from the mesoderm, up to and beyond late gastrulation, in patterning these cell behaviors.  相似文献   

3.
Multicellular organisms are generated by coordinated cell movements during morphogenesis. Convergent extension is a key tissue movement that organizes mesoderm, ectoderm, and endoderm in vertebrate embryos. The goals of researchers studying convergent extension, and morphogenesis in general, include understanding the molecular pathways that control cell identity, establish fields of cell types, and regulate cell behaviors. Cell identity, the size and boundaries of tissues, and the behaviors exhibited by those cells shape the developing embryo; however, there is a fundamental gap between understanding the molecular pathways that control processes within single cells and understanding how cells work together to assemble multicellular structures. Theoretical and experimental biomechanics of embryonic tissues are increasingly being used to bridge that gap. The efforts to map molecular pathways and the mechanical processes underlying morphogenesis are crucial to understanding: (1) the source of birth defects, (2) the formation of tumors and progression of cancer, and (3) basic principles of tissue engineering. In this paper, we first review the process of tissue convergent extension of the vertebrate axis and then review models used to study the self-organizing movements from a mechanical perspective. We conclude by presenting a relatively simple “wedge-model” that exhibits key emergent properties of convergent extension such as the coupling between tissue stiffness, cell intercalation forces, and tissue elongation forces.  相似文献   

4.
Baum B 《Current biology : CB》2004,14(17):R716-R718
To shape a developing animal, individual cell movements must be coordinated over long distances. Two recent studies help show how this is achieved during convergence and extension of the Drosophila germ-band, where polarity within the plane of the embryonic epithelium biases junction remodeling to polarize cell intercalation.  相似文献   

5.
BACKGROUND: Integrin recognition of fibronectin is required for normal gastrulation including the mediolateral cell intercalation behaviors that drive convergent extension and the elongation of the frog dorsal axis; however, the cellular and molecular mechanisms involved are unclear. RESULTS: We report that depletion of fibronectin with antisense morpholinos blocks both convergent extension and mediolateral protrusive behaviors in explant preparations. Both chronic depletion of fibronectin and acute disruptions of integrin alpha5beta1 binding to fibronectin increases the frequency and randomizes the orientation of polarized cellular protrusions, suggesting that integrin-fibronectin interactions normally repress frequent random protrusions in favor of fewer mediolaterally oriented ones. In the absence of integrin alpha5beta1 binding to fibronectin, convergence movements still occur but result in convergent thickening instead of convergent extension. CONCLUSIONS: These findings support a role for integrin signaling in regulating the protrusive activity that drives axial extension. We hypothesize that the planar spatial arrangement of the fibrillar fibronectin matrix, which delineates tissue compartments within the embryo, is critical for promoting productive oriented protrusions in intercalating cells.  相似文献   

6.
Zebrafish gastrulation entails morphogenetic cell movements that shape the body plan and give rise to an embryo with defined anterior–posterior and dorsal–ventral axes. Regulating these cell movements are diverse signaling pathways and proteins including Wnts, Src-family tyrosine kinases, cadherins, and matrix metalloproteinases. While our knowledge of how these proteins impact cell polarity and migration has advanced considerably in the last decade, almost no data exist regarding the organization of extracellular matrix (ECM) during zebrafish gastrulation. Here, we describe for the first time the assembly of a fibronectin (FN) and laminin containing ECM in the early zebrafish embryo. This matrix was first detected at early gastrulation (65% epiboly) in the form of punctae that localize to tissue boundaries separating germ layers from each other and the underlying yolk cell. Fibrillogenesis increased after mid-gastrulation (80% epiboly) coinciding with the period of planar cell polarity pathway-dependent convergence and extension cell movements. We demonstrate that FN fibrils present beneath deep mesodermal cells are aligned in the direction of membrane protrusion formation. Utilizing antisense morpholino oligonucleotides, we further show that knockdown of FN expression causes a convergence and extension defect. Taken together, our data show that similar to amphibian embryos, the formation of ECM in the zebrafish gastrula is a dynamic process that occurs in parallel to at least a portion of the polarized cell behaviors shaping the embryonic body plan. These results provide a framework for uncovering the interrelationship between ECM structure and cellular processes regulating convergence and extension such as directed migration and mediolateral/radial intercalation.  相似文献   

7.
During vertebrate gastrulation, a ventral to dorsal gradient of bone morphogenetic protein (Bmp) activity establishes cell fates. Concomitantly, convergent extension movements narrow germ layers mediolaterally while lengthening them anteroposteriorly. Here, by measuring movements of cell populations in vivo, we reveal the presence of three domains of convergent extension movements in zebrafish gastrula. Ventrally, convergence and extension movements are absent. Lateral cell populations converge and extend at increasing speed until they reach the dorsal domain where convergence speed slows but extension remains strong. Using dorsalized and ventralized mutants, we demonstrate that these domains are specified by the Bmp activity gradient. In vivo cell morphology and behavior analyses indicated that low levels of Bmp activity might promote extension with little convergence by allowing mediolateral cell elongation and dorsally biased intercalation. Further, single cell movement analyses revealed that the high ventral levels of Bmp activity promote epibolic migration of cells into the tailbud, increasing tail formation at the expense of head and trunk. We show that high Bmp activity limits convergence and extension by negatively regulating expression of the wnt11 (silberblick) and wnt5a (pipetail) genes, which are required for convergent extension but not cell fate specification. Therefore, during vertebrate gastrulation, a single gradient of Bmp activity, which specifies cell fates, also regulates the morphogenetic process of convergent extension.  相似文献   

8.
This study demonstrates that proper spatiotemporal expression and the physical assembly state of fibronectin (FN) matrix play key roles in the regulation of morphogenetic cell movements in vivo. We examine the progressive assembly and 3D fibrillar organization of FN and its role in regulating cell and tissue movements in Xenopus embryos. Expression of the 70 kD N-terminal fragment of FN blocks FN fibril assembly at gastrulation but not initial FN binding to integrins at the cell surface. We find that fibrillar FN is necessary to maintain cell polarity through oriented cell division and to promote epiboly, possibly through maintenance of tissue-surface tension. In contrast, FN fibrils are dispensable for convergence and extension movements required for axis elongation. Closure of the migratory mesendodermal mantle was accelerated in the absence of a fibrillar matrix. Thus, the macromolecular assembly of FN matrices may constitute a general regulatory mechanism for coordination of distinct morphogenetic movements.  相似文献   

9.
We make use of a novel system of explant culture and high resolution video-film recording to analyse for the first time the cell behaviour underlying convergent extension and segmentation in the somitic mesoderm of Xenopus. We find that a sequence of activities sweeps through the somitic mesoderm from anterior to posterior during gastrulation and neurulation, beginning with radial cell intercalation or thinning, continuing with mediolateral intercalation and cell elongation, and culminating in segmentation and somite rotation. Radial intercalation at the posterior tip lengthens the tissue, while mediolateral intercalation farther anterior converges it toward the midline. This extension of the somitic mesoderm helps to elongate the dorsal side of intact neurulae. By separating tissues, we demonstrate that cell rearrangement is independent of the notochord, but radial intercalation - and thus the bulk of extension - requires the presence of an epithelium, either endodermal or ectodermal. Segmentation, on the other hand, can proceed in somitic mesoderm isolated at the end of gastrulation. Finally, we discuss the relationship between cell rearrangement and segmentation.  相似文献   

10.
Although our understanding of the regulation of cellular actin and its control during the development of invertebrates is increasing, the question as to how such actin dynamics are regulated differentially across the vertebrate embryo to effect its relatively complex morphogenetic cell movements remains poorly understood. Intercellular signaling that provides spatial and temporal cues to modulate the subcellular localization and activity of actin regulatory molecules represents one important mechanism. Here we explore whether the localized gene expression of specific actin regulatory molecules represents another developmental mechanism. We have identified a cap1 homolog and a novel guanine nucleotide exchange factor (GEF), quattro (quo), that share a restricted gene expression domain in the anterior mesendoderm of the zebrafish gastrula. Each gene is required for specific cellular behaviors during the anterior migration of this tissue; furthermore, cap1 regulates cortical actin distribution specifically in these cells. Finally, although cap1 and quo are autonomously required for the normal behaviors of these cells, they are also nonautonomously required for convergence and extension movements of posterior tissues. Our results provide direct evidence for the deployment of developmentally restricted actin-regulatory molecules in the control of morphogenetic cell movements during vertebrate development.  相似文献   

11.
We cloned Xenopus Strabismus (Xstbm), a homologue of the Drosophila planar cell or tissue polarity gene. Xstbm encodes four transmembrane domains in its N-terminal half and a PDZ-binding motif in its C-terminal region, a structure similar to Drosophila and mouse homologues. Xstbm is expressed strongly in the deep cells of the anterior neural plate and at lower levels in the posterior notochordal and neural regions during convergent extension. Overexpression of Xstbm inhibits convergent extension of mesodermal and neural tissues, as well as neural tube closure, without direct effects on tissue differentiation. Expression of Xstbm(DeltaPDZ-B), which lacks the PDZ-binding region of Xstbm, inhibits convergent extension when expressed alone but rescues the effect of overexpressing Xstbm, suggesting that Xstbm(DeltaPDZ-B) acts as a dominant negative and that both increase and decrease of Xstbm function from an optimum retards convergence and extension. Recordings show that cells expressing Xstbm or Xstbm(DeltaPDZ-B) fail to acquire the polarized protrusive activity underlying normal cell intercalation during convergent extension of both mesodermal and neural and that this effect is population size-dependent. These results further characterize the role of Xstbm in regulating the cell polarity driving convergence and extension in Xenopus.  相似文献   

12.
How genetic programs generate cell-intrinsic forces to shape embryos is actively studied, but less so how tissue-scale physical forces impact morphogenesis. Here we address the role of the latter during axis extension, using Drosophila germband extension (GBE) as a model. We found previously that cells elongate in the anteroposterior (AP) axis in the extending germband, suggesting that an extrinsic tensile force contributed to body axis extension. Here we further characterized the AP cell elongation patterns during GBE, by tracking cells and quantifying their apical cell deformation over time. AP cell elongation forms a gradient culminating at the posterior of the embryo, consistent with an AP-oriented tensile force propagating from there. To identify the morphogenetic movements that could be the source of this extrinsic force, we mapped gastrulation movements temporally using light sheet microscopy to image whole Drosophila embryos. We found that both mesoderm and endoderm invaginations are synchronous with the onset of GBE. The AP cell elongation gradient remains when mesoderm invagination is blocked but is abolished in the absence of endoderm invagination. This suggested that endoderm invagination is the source of the tensile force. We next looked for evidence of this force in a simplified system without polarized cell intercalation, in acellular embryos. Using Particle Image Velocimetry, we identify posteriorwards Myosin II flows towards the presumptive posterior endoderm, which still undergoes apical constriction in acellular embryos as in wildtype. We probed this posterior region using laser ablation and showed that tension is increased in the AP orientation, compared to dorsoventral orientation or to either orientations more anteriorly in the embryo. We propose that apical constriction leading to endoderm invagination is the source of the extrinsic force contributing to germband extension. This highlights the importance of physical interactions between tissues during morphogenesis.  相似文献   

13.
BACKGROUND: Convergence extension movements are conserved tissue rearrangements implicated in multiple morphogenetic events. While many of the cell behaviors involved in convergent extension are known, the molecular interactions required for this process remain elusive. However, past evidence suggests that regulation of cell adhesion molecule function is a key step in the progression of these behaviors. RESULTS: Antibody blocking of fibronectin (FN) adhesion or dominant-negative inhibition of integrin beta 1 function alters cadherin-mediated cell adhesion, promotes cell-sorting behaviors in reaggregation assays, and inhibits medial-lateral cell intercalation and axial extension in gastrulating embryos and explants. Embryo explants were used to demonstrate that normal integrin signaling is required for morphogenetic movements within defined regions but not for cell fate specification. The binding of soluble RGD-containing fragments of fibronectin to integrins promotes the reintegration of dissociated single cells into intact tissues. The changes in adhesion observed are independent of cadherin or integrin expression levels. CONCLUSIONS: We conclude that integrin modulation of cadherin adhesion influences cell intercalation behaviors within boundaries defined by extracellular matrix. We propose that this represents a fundamental mechanism promoting localized cell rearrangements throughout development.  相似文献   

14.
Oriented cell divisions in the extending germband of Drosophila   总被引:1,自引:0,他引:1  
Tissue elongation is a general feature of morphogenesis. One example is the extension of the germband, which occurs during early embryogenesis in Drosophila. In the anterior part of the embryo, elongation follows from a process of cell intercalation. In this study, we follow cell behaviour at the posterior of the extending germband. We find that, in this region, cell divisions are mostly oriented longitudinally during the fast phase of elongation. Inhibiting cell divisions prevents longitudinal deformation of the posterior region and leads to an overall reduction in the rate and extent of elongation. Thus, as in zebrafish embryos, cell intercalation and oriented cell division together contribute to tissue elongation. We also show that the proportion of longitudinal divisions is reduced when segmental patterning is compromised, as, for example, in even skipped (eve) mutants. Because polarised cell intercalation at the anterior germband also requires segmental patterning, a common polarising cue might be used for both processes. Even though, in fish embryos, both mechanisms require the classical planar cell polarity (PCP) pathway, germband extension and oriented cell divisions proceed normally in embryos lacking dishevelled (dsh), a key component of the PCP pathway. An alternative means of planar polarisation must therefore be at work in the embryonic epidermis.  相似文献   

15.
BACKGROUND: During Xenopus gastrulation, cell intercalation drives convergent extension of dorsal tissues. This process requires the coordination of motility throughout a large population of cells. The signaling mechanisms that regulate these movements in space and time remain poorly understood. RESULTS: To investigate the potential contribution of calcium signaling to the control of morphogenetic movements, we visualized calcium dynamics during convergent extension using a calcium-sensitive fluorescent dye and a novel confocal microscopy system. We found that dramatic intercellular waves of calcium mobilization occurred in cells undergoing convergent extension in explants of gastrulating Xenopus embryos. These waves arose stochastically with respect to timing and position within the dorsal tissues. Waves propagated quickly and were often accompanied by a wave of contraction within the tissue. Calcium waves were not observed in explants of the ventral marginal zone or prospective epidermis. Pharmacological depletion of intracellular calcium stores abolished the calcium dynamics and also inhibited convergent extension without affecting cell fate. These data indicate that calcium signaling plays a direct role in the coordination of convergent extension cell movements. CONCLUSIONS: The data presented here indicate that intercellular calcium signaling plays an important role in vertebrate convergent extension. We suggest that calcium waves may represent a widely used mechanism by which large groups of cells can coordinate complex cell movements.  相似文献   

16.
In previous work (Elul, T., Keller, R., 2000. Monopolar protrusive activity: a new morphogenic cell behavior in the neural plate dependent on vertical interactions with the mesoderm in Xenopus. Dev. Biol. 224, 3-19; Ezin, A.M., Skoglund, P. Keller, R. 2003. The midline (notochord and notoplate) patterns the cell motility underlying convergence and extension of the Xenopus neural plate. Dev. Biol. 256, 100-114), the midline tissues of notochord and overlying notoplate were found to induce the monopolar, medially directed protrusive activity of deep neural cells. This behavior is thought to drive the mediolateral intercalation and convergent extension of the neural plate in Xenopus. Here we address the issue of whether the notochord, the notoplate, or both is essential for this induction. Our strategy was to remove the notochord, leaving the overlying notoplate intact, and determine whether it alone can induce the monopolar, medially directed cell behavior. We first establish that the notoplate (presumptive floor plate), when separated from the underlying notochord in the early neurula (stages 13-14), will independently mature into a floor plate as assayed three criteria: (1) continued expression of an early marker, sonic hedgehog, and a later, marker, F-spondin; (2) the display of the notoplate/floor plate-specific randomly oriented protrusive activity; (3) the characteristic lack of mixing of cells between the notoplate and lateral neural plate. Under these conditions, in the presence of a mature notoplate/floor plate and in the absence of the notochord, the characteristic monopolar, medially directed behavior occurred, but only locally near the midline. These results show that the notoplate/floor plate capacity to induce the medially directed motility is limited in range, and they suggest that the notochord is necessary for the normally observed longer range induction in lateral neural plate cells. This work helps to further the understanding of molecular and tissue interactions required for convergent extension.  相似文献   

17.
We have analyzed cell behavior in the organizer region of the Xenopus laevis gastrula by making high resolution time-lapse recordings of cultured explants. The dorsal marginal zone, comprising among other tissues prospective notochord and somitic mesoderm, was cut from early gastrulae and cultured in a way that permits high resolution microscopy of the deep mesodermal cells, whose organized intercalation produces the dramatic movements of convergent extension. At first, the explants extend without much convergence. This initial expansion results from rapid radial intercalation, or exchange of cells between layers. During the second half of gastrulation, the explants begin to converge strongly toward the midline while continuing to extend vigorously. This second phase of extension is driven by mediolateral cell intercalation, the rearrangement of cells within each layer to lengthen and narrow the array. Toward the end of gastrulation, fissures separate the central notochord from the somitic mesoderm on each side, and cells in both tissues elongate mediolaterally as they intercalate. A detailed analysis of the spatial and temporal pattern of these behaviors shows that both radial and mediolateral intercalation begin first in anterior tissue, demonstrating that the anterior-posterior timing gradient so evident in the mesoderm of the neurula is already forming in the gastrula. Finally, time-lapse recordings of intact embryos reveal that radial intercalation takes places primarily before involution, while mediolateral intercalation begins as the mesoderm goes around the lip. We discuss the significance of these findings to our understanding of both the mechanics of gastrulation and the patterning of the dorsal axis.  相似文献   

18.
Convergent extension (CE), a kinematic motif associated with several important morphogenetic movements in embryos, entails narrowing of a tissue in one in-plane direction and elongation in the other. Although the cell elongation and intercalation which accompany this process have been investigated and relevant genes and biochemical pathways have been studied in multiple organisms, a fundamental question that has not yet been answered is "Do the lamellipodia thought to drive these motions actually have the mechanical capacity to do so?" Here, we address this and a number of related issues using a state-of-the-art computational model which can replicate cell motions, changes in cell shape and tissue deformations. The model is based on the cell-level finite element approach of Chen and Brodland, but has additional features which allow it to model lamellipodium formation and contraction. In studying CE, computational models provide an important complement to molecular approaches because they reveal the "mechanical pathways" through which gene products must ultimately act in order to produce physical movements. The model shows that lamellipodia can drive CE, that they do so through cell intercalations and that the elongated cells characteristic of CE arise only when adjacent tissues resist convergence, a result which we confirm experimentally.  相似文献   

19.
Convergence and extension are gastrulation movements that participate in the establishment of the vertebrate body plan. Using new methods for quantifying convergence and extension movements of cell groups, we demonstrate that in wild-type embryos, dorsal convergence of lateral cells is initially slow, but speeds up between the end of the gastrula period and early segmentation. Convergence and extension movements of lateral cells in trilobite mutants are normal during the gastrula period but reduced by early segmentation. Morphometric studies revealed that during epiboly wild-type gastrulae become ovoid, whereas trilobite embryos remain rounder. By segmentation, trilobite embryos exhibit shorter, broader embryonic axes. The timing of these morphological defects correlates well with impaired cell movements, suggesting reduced convergence and extension are the main defects underlying the trilobite phenotype. Our gene expression, genetic, and fate mapping analyses show the trilobite mutation affects movements without altering dorsoventral patterning or cell fates. We propose that trilobite function is required for cell properties that promote increased speed of converging cells and extension movements in the dorsal regions of the zebrafish gastrula.  相似文献   

20.
During vertebrate gastrulation, concurrent inductive events and cell movements fashion the body plan. Convergence and extension (C&E) gastrulation movements narrow the vertebrate embryonic body mediolaterally while elongating it rostrocaudally. Segmented somites are shaped and positioned by C&E alongside the notochord and differentiate into skeleton, fast, and slow muscles during somitogenesis. In zebrafish, simultaneous inactivation of non-canonical Wnt signaling components Knypek and Trilobite strongly impairs C&E gastrulation movements. Here we show that knypek;trilobite double mutants exhibit a severe deficit in slow muscles and their precursor, adaxial cells, revealing essential roles of C&E movements in adaxial cell development. Adaxial cells become distinguishable in the presomitic mesoderm during late gastrulation by their expression of myogenic factors and axial-adjacent position. Using cell tracing analyses and genetic manipulations, we demonstrate that C&E movements regulate the number of prospective adaxial cells specified during gastrulation by determining the size of the interface between the inductive axial and target presomitic tissues. During segmentation, when the range of Hedgehog signaling from the axial tissue declines, tight apposition of prospective adaxial cells to the notochord, which is achieved by convergence movements, is necessary for their continuous Hedgehog reception and fate maintenance. We provide direct evidence to show that the deficiency of adaxial cells in knypek;trilobite double mutants is due to impaired C&E movements, rather than an alteration in Hedgehog signal and its reception, or a cell-autonomous requirement for Knypek and Trilobite in adaxial cell development. Our results underscore the significance of precise coordination between cell movements and inductive tissue interactions during cell fate specification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号