首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MER5 (also called peroxiredoxin III, PrxIII) is a member of peroxiredoxin family that has antioxidant activity. The present study was performed to investigate its in vivo function using MER5 knockout mice. MER5 knockout mice were born in normal frequency and could grow to maturity, but we found that intracellular ROS levels are significantly higher in the macrophages of the knockout mice. We examined roles of MER5 function for the oxidative stress responses by intratracheal inoculation of lipopolysaccharide (LPS) to the mice. Lung inflammation such as inflammatory cell infiltration and airway wall thickening was more severely detected in the knockout mice. At the same time, oxidative damage on DNA and proteins was more strongly detected in lung tissues of the knockout mice, including 8-hydroxy-2'-deoxyguanosine (8-OHdG) formation and protein carbonylation. The degrees of lung inflammation and oxidative damage were positively related with LPS doses. Our results indicate that MER5 knockout mice accumulated higher intracellular ROS levels, which cause LPS-induced lung injury more severely, and thus, suggested that MER5 acts as an important scavenger of reactive oxygen species (ROS) under oxidative stress.  相似文献   

2.
Recently significant progress has been made in differentiating embryonic stem (ES) cells toward pancreatic cells. However, little is known about the generation and identification of pancreatic progenitor cells from ES cells. Here we explored the influence of sodium butyrate on pancreatic progenitor differentiation, and investigated the different effects of sodium butyrate on pancreatic and hepatic progenitor formation. Our results indicated that different concentration and exposure time of sodium butyrate led to different differentiating trends of ES cells. A relatively lower concentration of sodium butyrate with shorter exposure time induced more pancreatic progenitor cell formation. When stimulated by a higher concentration and longer exposure time of sodium butyrate, ES cells differentiated toward hepatic progenitor cells rather than pancreatic progenitor cells. These progenitor cells could further mature into pancreatic and hepatic cells with the supplement of exogenous inducing factors. The resulting pancreatic cells expressed specific markers such as insulin and C‐peptide, and were capable of insulin secretion in response to glucose stimulation. The differentiated hepatocytes were characterized by the expression of a number of liver‐associated genes and proteins, and had the capability of glycogen storage. Thus, the current study demonstrated that sodium butyrate played different roles in inducing ES cells toward pancreatic or hepatic progenitor cells. These progenitor cells could be further induced into mature pancreatic cells and hepatocytes. This finding may facilitate the understanding of pancreatic and hepatic cell differentiation from ES cells, and provide a potential source of transplantable cells for cell‐replacement therapies. J. Cell. Biochem. 109: 236–244, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
Despite a growing body of literature concerning the hematopoietic differentiation of human embryonic stem cells (hESCs), the full hematopoietic potential of the majority of existing hESC lines remains unknown. In this study, the hematopoietic response of five NIH-approved hESC lines (H1, hSF6, BG01, BG02, and BG03) was compared. Our data show that despite expressing similar hESC markers under self-renewing conditions and initiating mesodermal differentiation under spontaneous differentiation conditions, marked differences in subsequent hematopoietic differentiation potential among these lines existed. A high degree of hematopoietic differentiation was attained only by H1 and BG02, whereas this process appeared to be abortive in nature for hSF6, BG01, and BG03. This difference in hematopoietic differentiation predisposition was readily apparent during spontaneous differentiation, and further augmented under hematopoietic-inducing conditions. This predisposition appeared to be intrinsic to the specific hESC line and independent of passage number or gender karyotype. Interestingly, H1 and BG02 displayed remarkable similarities in their kinetics of hematopoietic marker expression, hematopoietic colony formation, erythroid differentiation, and globin expression, suggesting that a similar, predetermined differentiation sequence is followed. The identification of intrinsic and extrinsic factors governing the hematopoietic differentiation potential of hESCs will be of great importance for the putative clinical utility of hESC lines.  相似文献   

4.
Cell differentiation lineage in the prostate   总被引:12,自引:0,他引:12  
Prostatic epithelium consists mainly of luminal and basal cells, which are presumed to differentiate from common progenitor/stem cells. We hypothesize that progenitor/stem cells are highly concentrated in the embryonic urogenital sinus epithelium from which prostatic epithelial buds develop. We further hypothesize that these epithelial progenitor/stem cells are also present within the basal compartment of adult prostatic epithelium and that the spectrum of differentiation markers of embryonic and adult progenitor/stem cells will be similar. The present study demonstrates that the majority of cells in embryonic urogenital sinus epithelium and developing prostatic epithelium (rat, mouse, and human) co-expressed luminal cytokeratins 8 and 18 (CK8, CK18), the basal cell cytokeratins (CK14, CK5), p63, and the so-called transitional or intermediate cell markers, cytokeratin 19 (CK19) and glutathione-S-transferase-pi (GSTpi). The majority of luminal cells in adult rodent and human prostates only expressed luminal markers (CK8, CK18), while the basal epithelial cell compartment contained several distinct subpopulations. In the adult prostate, the predominant basal epithelial subpopulation expressed the classical basal cell markers (CK5, CK14, p63) as well as CK19 and GSTpi. However, a small fraction of adult prostatic basal epithelial cells co-expressed the full spectrum of basal and luminal epithelial cell markers (CK5, CK14, CK8, CK18, CK19, p63, GSTpi). This adult prostatic basal epithelial cell subpopulation, thus, exhibited a cell differentiation marker profile similar to that expressed in embryonic urogenital sinus epithelium. These rare adult prostatic basal epithelial cells are proposed to be the progenitor/stem cell population. Thus, we propose that at all stages (embryonic to adult) prostatic epithelial progenitor/stem cells maintain a differentiation marker profile similar to that of the original embryonic progenitor of the prostate, namely urogenital sinus epithelium. Adult progenitor/stem cells co-express both luminal cell, basal cell, and intermediate cell markers. These progenitor/stem cells differentiate into mature luminal cells by maintaining CK8 and CK18, and losing all other makers. Progenitor/stem cells also give rise to mature basal cells by maintaining CK5, CK14, p63, CK19, and GSTpi and losing K8 and K18. Thus, adult prostate basal and luminal cells are proposed to be derived from a common pleuripotent progenitor/stem cell in the basal compartment that maintains its embryonic profile of differentiation markers from embryonic to adult stages.  相似文献   

5.
K562 cells can be used as a model of erythroid differentiation on being induced by hemin. We found that the level of annexin1 gene expression was notably increased during this indicated process. To test the hypothesis that annexin1 can regulate erythropoiesis, K562 cell clones in which annexin1 was stably increased and was knocked down by RNAi were established, respectively. With analysis by hemoglobin quantification, benzidine staining, and marker gene expression profile determination, we confirmed that hemin-induced erythroid differentiation of K562 cells was modestly stimulated by overexpression of annexin1 while it was significantly blocked by knock down of annexin1. Further studies revealed that the mechanisms of annexin1 regulation of the erythroid differentiation was partially related to the increased ERK phosphorylation and expression of p21(cip/waf), since specific inhibitor of MEK blocked the function of annexin1 in erythroid differentiation. We concluded that annexin1 exerted its erythropoiesis regulating effect by ERK pathway.  相似文献   

6.
7.
8.
Bellik L  Ledda F  Parenti A 《FEBS letters》2005,579(12):2731-2736
The exact phenotype and lineage of endothelial progenitor cells (EPCs) are still a matter of debate and different expansion protocols are used to obtain them. In this study, EPC expansion from peripheral blood mononuclear cells was analyzed within the first week of culture. Both the adherent and suspended cells, of which the latter usually discarded, were considered. We provide, for the first time, a systematic study of EPC phenotype and functional features within the first 3 days of culture. Moreover, within the 2nd day, both cellular fractions displayed a significant increase in endothelial marker expression which correlated with EPC properties.  相似文献   

9.
10.
Peroxiredoxin 3 (PRX3) is predominantly located in mitochondria and plays a major role in scavenging hydrogen peroxide of mitochondria. In the present study, we detected plasma PRX3 in pregnant women receiving oral glucose tolerance test at 24–28 gestational weeks. Plasma PRX3 was significantly increased about 1?h later than insulin secretion. In vitro detection of PRX3 in mouse islet cells showed up-regulation by more than 2-fold at 1?h and reached its top at 2?h of glucose stimulation, and the PRX3 level in cultured mediums was concomitantly elevated in a glucose concentration-dependent manner. In addition, both fasting plasma insulin and PRX3 were significantly higher in the subjects of term pregnancy as compared to that at 24–28 gestational weeks, and there was a positive correlation between plasma PRX3 and insulin. Our results indicate that PRX3 plays an active role in the response to insulin release. The positive association of plasma PRX3 and insulin suggest PRX3 to be a potential indicator of high insulin resistance.  相似文献   

11.
Autophagy plays important roles in self-renewal and differentiation of stem cells. Hepatic progenitor cells (HPCs) are thought to have the ability of self-renewal as well as possess a bipotential capacity, which allows them to differentiate into both hepatocytes and bile ductular cells. However, how autophagy contributes to self-renewal and differentiation of hepatic progenitor cells is not well understood. In this study, we use a well-established rat hepatic progenitor cell lines called WB-F344, which is treated with 3.75 mM sodium butyrate (SB) to promote the differentiation of WB-F344 along the biliary phenotype. We found that autophagy was decreased in the early stage of biliary differentiation, and maintained a low level at the late stage. Activation of autophagy by rapamycin or starvation suppressed the biliary differentiation of WB-F344. Further study reported that autophagy inhibited Notch1 signaling pathway, which contributed to biliary differentiation and morphogenesis. In conclusions, autophagy regulates biliary differentiation of hepatic progenitor cells through Notch1 signaling pathway.  相似文献   

12.
Human dental stem or precursor cells can differentiate into multiple cell types like adipocytes, osteoblasts or chondrocytes. Recently, a number of different human dental stem cell lines were differentiated into neurons. This makes dental stem cells interesting as possible cell-based therapeutics for neural degenerative diseases. To test this hypothesis, we have investigated the neural differentiation potential of murine dental follicle precursor cells (mDFPCs). The mDFPC cell line was newly established without cell immortalization. After differentiation, neural cell marker expression in mDFPCs was checked and compared with that of murine retinal progenitor cells (mRPCs). Differentiated mDFPCs became neuron-like cells with small cell bodies and long/branching neurites, similar to differentiated mRPCs. However, mRPCs showed more complete neural differentiation. Furthermore, 5% of the differentiated mDFPCs and 37% of the differentiated mRPCs were positive for the glia cell marker GFAP (glial fibrillary acidic protein). The data presents new evidence of neural differentiation of mDFPCs, but only a small percentage of mDFPCs differentiated into glia cells, unlike mRPCs.  相似文献   

13.
BMPs regulate the developmental program of hematopoiesis. We demonstrate an increased expression of the BMP receptors Ia and II on cultured CD34+ cells and examine the impact of BMP-2, -4 and -7 on postnatal HPC cultured with stem cell factor, flt3-ligand and interleukin-3 (SF3). The addition of BMP-2 at 5, 25 and 50 ng/m to serum-free medium with SF3 yielded a 1.4- to 1.2-fold increase of CD34+ cells after seven days, but no effect on CFC or LTC-IC was observed. BMP-4 at 25 ng/ml induced a 2.9-fold expansion of colony-forming cells (CFC) within 1 week followed by a decrease to pre-culture values on day 14. The number of long-term culture initiating cells (LTC-IC) decreased by the factor 40 from day 0 to day 14. BMP-7 at 5–50 ng/ml had not effect on the expansion of CD34+ cells and CFC, but improved at 5 ng/ml the survival of LTC-IC significantly as compared to SF3 alone. In summary, BMP-2, -4 and -7 have no effect on the proliferation of CD34+ cells and CFC cultured with serum-free medium and SF3. However, BMP-7 but not BMP-2 and BMP-4 prevents the loss of primitive hematopoietic progenitor cells cultured in SFM plus SF3.  相似文献   

14.
Peroxiredoxins are redox-sensing multifunctional enzymes, among them peroxiredoxin 6 (Prx6) can neutralize the most broadest range of hydroperoxides and play an important role in maintaining the redox homeostasis of the cell. In the present study, radioprotective and signaling regulatory effects of Prx6 were demonstrated and characterized. Intravenously administered exogenous Prx6 protects the organism of mice from the destructive action of ionizing radiation in the lethal dose range of 5–10?Gy. Dose reduction factor of 1.4 Prx6 injection reduces the severity of radiation-induced leuko- and thrombopenia in irradiated animals, also preventing the destruction of epithelial cells in the small intestine. Injecting exogenous Prx6 also as its mutated form of Prx6–C47S lacking peroxidase activity affects the expression of genes involved in antioxidant response, DNA reparation, apoptosis and inflammatory processes, in bone marrow cells both in intact animals and in those subjected to ionizing radiation. The radioprotective properties of Prx6 are based, on the one hand, on the capability for ROS neutralization, and on the other hand – on the potentiality for activation of reparation processes of the cell under oxidative stress conditions. Prx6 can be considered as a potentially perspective radioprotective agent for the reduction of risks from the damaging action of ionizing radiation on the mammalian organism.  相似文献   

15.
Epigenetic alterations during cellular differentiation are a key molecular mechanism which both instructs and reinforces the process of lineage commitment. Within the haematopoietic system, progressive changes in the DNA methylome of haematopoietic stem cells (HSCs) are essential for the effective production of mature blood cells. Inhibition or loss of function of the cellular DNA methylation machinery has been shown to lead to a severe perturbation in blood production and is also an important driver of malignant transformation. HSCs constitute a very rare cell population in the bone marrow, capable of life-long self-renewal and multi-lineage differentiation. The low abundance of HSCs has been a major technological barrier to the global analysis of the CpG methylation status within both HSCs and their immediate progeny, the multipotent progenitors (MPPs). Within this Extra View article, we review the current understanding of how the DNA methylome regulates normal and malignant hematopoiesis. We also discuss the current methodologies that are available for interrogating the DNA methylation status of HSCs and MPPs and describe a new data set that was generated using tagmentation-based whole genome bisulfite sequencing (TWGBS) in order to comprehensively map methylated cytosines using the limited amount of genomic DNA that can be harvested from rare cell populations. Extended analysis of this data set clearly demonstrates the added value of genome-wide sequencing of methylated cytosines and identifies novel important cis-acting regulatory regions that are dynamically remodeled during the first steps of haematopoietic differentiation.  相似文献   

16.
介绍造血干 / 祖细胞的体外培养和扩增取得的显著进展 :包括各种生物反应器的应用 ,三维培养系统的建立。扩增后的造血细胞在动物模型和临床上的应用已取得了初步成效。  相似文献   

17.
18.
Normally, hepatic progenitor cells (HPCs) are activated and differentiate into hepatocytes or bile ductular cells to repair liver damage during liver injury. However, it remains controversial whether the abnormal differentiation of HPCs occurs under abnormal conditions. Lipopolysaccharide (LPS), a component of the microenvironment, promotes liver fibrosis. In the present study, HPCs promoted liver fibrosis in rats following carbon tetrachloride (CCl4) treatment. Meanwhile, the LPS level in the portal vein was elevated and played a primary role in the fate of HPCs. In vitro, LPS inhibited the hepatobiliary differentiation of HPCs. Concurrently, HPCs co-cultured with LPS for 2 weeks showed a tendency to differentiate into myofibroblasts (MFs). Thus, we conclude that LPS promotes the aberrant differentiation of HPCs into MFs as a third type of descendant. This study provides insight into a novel differentiation fate of HPCs in their microenvironment, and could thus lead to the development of HPCs for treatment methods in liver fibrosis.  相似文献   

19.
表观遗传学在干细胞的分化与成熟过程中扮演着重要的角色。其中发现组蛋白去甲基化酶1(LSD1)可以动态地调节组蛋白的甲基化状态,进而调控基因转录的激活和抑制以及X染色体失活等过程,LSD1在肿瘤干细胞、胚胎干细胞、神经干细胞及诱导多能干细胞中均有表达,并影响这些干细胞的增殖和分化过程。就LSD1在干细胞增殖与分化中的调控作用的研究进展进行综述。  相似文献   

20.
Yu Z  Liu W  Liu D  Fan L 《Cellular immunology》2006,241(1):32-37
This study was designed to investigate the regulatory role of soluble interleukin-6 receptor (sIL-6R) and interleukin-6 (IL-6) fusion protein (Hyper-IL-6) in the differentiation of human myeloid and erythroid progenitors by a serum-free liquid suspension culture system, using the human cord blood-derived CD34(+)CD38(-) cells as a target. We found that Hyper-IL-6 promoted the generation of CD15(+) granulocytic and CD14(+) monocytic cells and suppressed that of CD14(-)CD1a(+) dendritic cells from CD36(-)CD15(-)CD14(-)CD1a(-)IL-6R(+) myeloid progenitors. Conversely, CD34(+)CD38(-) cell-derived early erythroid progenitors were negative for IL-6R expression. Hyper-IL-6 potentiated the generation of CD36(+)glycophorinA(high) mature erythroid cells from the IL-6R(-) early erythroid progenitors. Our results indicate that Hyper-IL-6 augments the generation of CD15(+) granulocytic, CD14(+) monocytic and CD36(+)glycophorinA(high) cell and suppresses that of CD14(-)CD1a(+) dendritic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号