首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Muraoka M  Kawakita M  Ishida N 《FEBS letters》2001,495(1-2):87-93
A novel human nucleotide sugar transporter (NST) which transports both UDP-glucuronic acid (UDP-GlcA) and UDP-N-acetylgalactosamine (UDP-GalNAc) has been identified, cloned and characterized. The strategy for the identification of the novel NST involved a search of the expressed sequence tags database for genes related to the human UDP-galactose transporter-related isozyme 1, followed by heterologous expression of a candidate gene (hUGTrel7) in Saccharomyces cerevisiae and biochemical analyses. Significantly more UDP-GlcA and UDP-GalNAc were translocated from the reaction medium into the lumen of microsomes prepared from the hUGTrel7-expressing yeast cells than into the control microsomes from cells not expressing hUGTrel7. The possibility that this transporter participates in glucuronidation and/or chondroitin sulfate biosynthesis is discussed.  相似文献   

2.
3.
Heparosan synthase catalyzes the polymerization of heparosan (-4GlcUAβ1-4GlcNAcα1-)(n) by transferring alternatively the monosaccharide units from UDP-GlcUA and UDP-GlcNAc to an acceptor molecule. Details on the heparosan chain initiation by Pasteurella multocida heparosan synthase PmHS2 and its influence on the polymerization process have not been reported yet. By site-directed mutagenesis of PmHS2, the single action transferases PmHS2-GlcUA(+) and PmHS2-GlcNAc(+) were obtained. When incubated together in the standard polymerization conditions, the PmHS2-GlcUA(+)/PmHS2-GlcNAc(+) showed comparable polymerization properties as determined for PmHS2. We investigated the first step occurring in heparosan chain initiation by the use of the single action transferases and by studying the PmHS2 polymerization process in the presence of heparosan templates and various UDP-sugar concentrations. We observed that PmHS2 favored the initiation of the heparosan chains when incubated in the presence of an excess of UDP-GlcNAc. It resulted in a higher number of heparosan chains with a lower average molecular weight or in the synthesis of two distinct groups of heparosan chain length, in the absence or in the presence of heparosan templates, respectively. These data suggest that PmHS2 transfers GlcUA from UDP-GlcUA moiety to a UDP-GlcNAc acceptor molecule to initiate the heparosan polymerization; as a consequence, not only the UDP-sugar concentration but also the amount of each UDP-sugar is influencing the PmHS2 polymerization process. In addition, it was shown that PmHS2 hydrolyzes the UDP-sugars, UDP-GlcUA being more degraded than UDP-GlcNAc. However, PmHS2 incubated in the presence of both UDP-sugars favors the synthesis of heparosan polymers over the hydrolysis of UDP-sugars.  相似文献   

4.
R Cecchelli  R Cacan  A Verbert 《FEBS letters》1986,208(2):407-412
The mechanism of translocation of UDP-GlcNAc, UDP-Gal and UDP-Glc into intracellular vesicles has been studied using thymocytes whose plasma membranes have been permeabilized with isotonic ammonium chloride. It has been previously shown that the intracellular vesicles have specific carriers for UDP-GlcNAc and UDP-Gal. We now report that the translocation of these two sugar nucleotides occurs via UDP-GlcNAc/UDP and UDP-Gal/UDP antiports. The entry of UDP-GlcNAc or UDP-Gal into vesicles was specifically dependent on the exit of UDP from these vesicles. In contrast, no antiport mechanism has been recovered with UDP-Glc for which no transport and accumulation into intracellular vesicles were observed.  相似文献   

5.
This is the first known report on the influence of vitamin B6-deficiency on the concentration of UDP-sugars and other uracil nucleotides in rats. Animals aged 3 weeks or 2 months were fed a vitamin B6-free diet for periods varying from 3 days to 7 weeks. Nucleotides were quantified by enzymatic-photometry and by SAX-high precision liquid chromatography. In 3 week-old rats, vitamin B6-deficiency resulted in an up to 6.3-fold increase in the concentrations of UTP, UDP, UMP and UDP-sugars and less of CTP in rat liver, while no changes were observed in older rats. In young rats, the concentration of uracil nucleotides started to increase after 1 week diet, with a maximum after 2 weeks. After 5 weeks, the concentrations returned to normal values. In heart, lungs, kidney and brain, concentrations were measured after 2 weeks diet in young rats. In contrast to liver, the heart muscle uracil nucleotide concentrations were decreased by 40%. In kidney, the sum of UTP, UDP and UMP showed a decrease of 40%, whereas UDP-sugars were increased 1.4-fold. In the lungs, nucleotide concentrations were mostly unaffected by vitamin B6-deficiency, despite a 70% increase of UDP-GA. In brain, UDP-Glc, UDP-Gal and the sum of CTP and CDP showed an increase of 30–50%. We became surprised that the increased UDP-sugar concentrations did not influence the structure of liver plasma membrane-N-glycans. Despite the 4 to 6-fold increase of UTP and UDP-sugars, no changes in the complexity or sialylation of these N-glycans could be detected. This study demonstrates that, especially in liver, pyridoxal phosphate is closely involved in the control of uracil nucleotides during a defined period of development. In contrast to in vitro experiments, in vivo N-glycan biosynthesis in liver is regulated by a more complex or higher mechanism than substrate concentrations. Agnes B. Renner and Kathrin Rieger contributed equally.  相似文献   

6.
An exocellular pyrophosphatase, active on the nucleotide precursors of peptidoglycans, has been found in the culture medium of Streptomyces mediterranei ME/R 17. This enzyme was separated from the DD-carboxypeptidase by batchwise adsorption on DEAE cellulose. The pyrophosphatase had no strict substrate requirements, it hydrolyzed various UDP-sugar substrates: UDP-GlcNAc, UDP-Mur NAc and UDP-MurNAc peptides, giving rise to the corresponding sugar phosphate and to UMP. The enzyme preparation also contained a 5'-nucleotidase activity and UMP was further split to give uridine. This nucleotidase activity was inhibited by potassium tetraborate. Both cytoplasmic and particulate preparations from cells of S. mediterranei also contained a pyrophosphatase activity while only the particulate fractions showed the DD-carboxypeptidase activity. The pyrophosphatase excretion was tested during the grwoth cycle. The activity of the enzyme showed a constant increase throughout the exponential growth and a stronger increase in the late exponential phase. Such a result could be correlated with a consumption of the nutrients in the culture medium, in fact a relatively poor culture medium had a strong positive effect upon the production of the exocellular pyrophosphatase.  相似文献   

7.
Previous studies reached different conclusions about whether class I hyaluronan synthases (HASs) elongate hyaluronic acid (HA) by addition to the reducing or the nonreducing end. Here we used two strategies to determine the direction of HA synthesis by purified class I HASs from Streptococcus equisimilis and Streptococcus pyogenes. In the first strategy we used each of the two UDP-sugar substrates separately to pulse label either the beginning or the end of HA chains. We then quantified the relative rates of radioactive HA degradation by treatment with beta-glycosidases that act at the nonreducing end. The results with both purified HASs demonstrated that HA elongation occurred at the reducing end. In the second strategy, we used purified S. equisimilis HAS, UDP-glucuronic acid, and UDP[beta-32P]-Glc-NAc to radiolabel nascent HA chains. Under conditions of limiting substrate, the 32P-labeled products were separated from the substrates by paper chromatography and identified as HA-[32P]UDP saccharides based on their degradation by snake venom phosphodiesterase or hyaluronidase and by their binding to a specific HA-binding protein. The 32P radioactivity was chased (released) by incubation with unlabeled UDP-sugars, showing that the HA-UDP linkages turn over during HA biosynthesis. In contrast, HA-[32P]UDP products made by the purified class II Pasteurella multocida HAS were not released by adding unlabeled UDP-sugars, consistent with growth at the nonreducing end for this enzyme. The results demonstrate that the streptococcal class I HAS enzymes polymerize HA chains at the reducing end.  相似文献   

8.
Upon modification of the reconstituted aspartate/glutamate carrier by mercury reagents the antiporter was converted into a unidirectional efflux carrier (Dierks, T., Salentin, A., Heberger, C. and Kr?mer, R. (1990) Biochim. Biophys. Acta 1028, 268). In addition to this basic change in the mechanism, the mercurials, reacting with exofacial cysteines, also affected the internal binding site of the carrier leading to an unmeasurable high Km and to a drastically reduced substrate specificity. The spectrum of efflux substrates comprised small anions from chloride to glutamate, but not cationic amino acids and ATP, hence resembling pore-like properties. However, in the efflux state important carrier properties were also observed. The activation energy (86 kJ/mol) was as high as for the antiport. Furthermore, efflux was inhibited by the presence of external substrate. This trans-inhibition strongly suggests that the external binding site of the carrier, prerequisite in the antiport mechanism, also is involved in conformational transitions during efflux function. However, antiport no longer is catalyzed after switching to the efflux state. Reversion of the induced efflux carrier to the antiport state was achieved using dithioerythritol, thereby further restoring substrate specificity and saturation kinetics. A model for antiport-efflux interconversion is presented suggesting that two reactive cysteines have to be modified in order to uncouple the inward and outward directed component of antiport. The pore-type characteristics of efflux are taken as evidence that a channel-like structure determines the selectivity of unidirectional transport. This intrinsic channel of the protein then is required for substrate translocation also during antiport function.  相似文献   

9.
We have examined the coupling and charge stoichiometry for UDP-GlcNAc transport into Golgi-enriched vesicles from rat liver. In the absence of added energy sources, these Golgi vesicles concentrate UDP-GlcNAc at least 20-fold, presumably by exchange with endogenous nucleotides. Under the conditions used, extravesicular degradation of UDP-GlcNAc has been eliminated, and less than 15% of the internalized radioactivity becomes associated with endogenous macromolecules. Of the remaining intravesicular label, 85% remains unmetabolized UDP-[3H]GlcNAc, and approximately 15% is hydrolyzed to [3H]GlcNAc-1-phosphate. Efflux of accumulated UDP-[3H]GlcNAc is induced by addition of UMP, UDP, or UDP-galactose to the external medium. Permeabilization of Golgi vesicles causes a rapid and nearly complete loss of internal UDP-[3H]GlcNAc, indicating that the results reflect transport and not binding. Moreover, transport of UDP-[3H]GlcNAc into these Golgi vesicles was stimulated up to 5-fold by mechanically preloading vesicles with either UDP-GlcNAc or UMP. The response of UMP/UMP exchange and UMP/UDP-GlcNAc exchange to alterations in intravesicular and extravesicular pH suggests that UDP-GlcNAc enters the Golgi apparatus in electroneutral exchange with the dianionic form of UMP.  相似文献   

10.
The bifunctional enzyme UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase is the key enzyme for the biosynthesis of sialic acids. As terminal components of glycoconjugates, sialic acids are associated with a variety of pathological processes such as inflammation and cancer. For the first time, this study reveals characteristics of the interaction of the epimerase site of the enzyme with its natural substrate, UDP-N-acetylglucosamine (UDP-GlcNAc) and derivatives thereof at atomic resolution. Saturation transfer difference NMR experiments were crucial in obtaining ligand binding epitopes and to rank ligands according to their binding affinities. Employing a fragment based approach, it was possible to assign the major component of substrate recognition to the UDP moiety. In particular, the binding epitopes of the uridine moieties of UMP, UDP, UDP-GalNAc, and UDP-GlcNAc are rather similar, suggesting that the binding mode of the UDP moiety is the same in all cases. In contrast, the hexopyranose units of UDP-GlcNAc and UDP-GalNAc display small differences reflecting the inability of the enzyme to process UDP-GalNAc. Surprisingly, saturation transfer difference NMR titrations show that UDP has the largest binding affinity to the epimerase site and that at least one phosphate group is required for binding. Consequently, this study provides important new data for rational drug design.  相似文献   

11.
UDP-sugar pyrophosphorylase catalyzes the conversion of various monosaccharide 1-phosphates to the respective UDP-sugars in the salvage pathway. Using the genomic database, we cloned a putative gene for UDP-sugar pyrophosphorylase from Arabidopsis. Although relatively stronger expression was detected in the vascular tissue of leaves and the pollen, AtUSP is expressed in most cell types of Arabidopsis, indicating a housekeeping function in nucleotide sugar metabolism. Recombinant AtUSP expressed in Escherichia coli exhibited broad specificity toward monosaccharide 1-phosphates, resulting in the formation of various UDP-sugars such as UDP-glucose, -galactose, -glucuronic acid, -xylose and -L-arabinose. A loss-of-function mutation in the AtUSP gene caused by T-DNA insertion completely abolished male fertility. These results indicate that AtUSP functions as a UDP-sugar pyrophosphorylase in the salvage pathway, and that the generation of UDP-sugars from monosaccharide 1-phosphates catalyzed by AtUSP is essential for pollen development in Arabidopsis.  相似文献   

12.
13.
Human UDP glycosyltransferases (UGTs) play an important role in xenobiotic detoxification. They increase the solubility of their substrates by adding a sugar moiety (such as glucuronic acid) to different functional entities (such as hydroxyl groups). The aim of this study was to investigate how glucuronidation of a standard substrate is affected by a change of the hetero-atom at the conjugation site. For this purpose, we compared the in vitro glucuronidation rates of 4-methylumbelliferone and 7-mercapto-4-methylcoumarin, respectively. Human liver microsomes catalyzed the S-glucuronidation of 7-mercapto-4--methylcoumarin almost as efficient as the O-glucuronidation of 4-methylumbelliferone. When testing isoenzyme specificity by whole cell biotransformation with fission yeast strains that recombinantly express all 19 human members of the UGT1 and UGT2 families, it was found that 13 isoenzymes were able to glucuronidate 7-mercapto-4-methylcoumarin, with five of them being specific for this substrate and the other eight also converting 4-methylumbelliferone under these conditions. The remaining six UGTs did not accept either substrate. Out of the eight isoenzymes that glucuronidated both substrates, four catalyzed both reactions approximately to the same extent, while three displayed higher conversion rates towards 4-methylumbelliferone and one preferred 7-mercapto-4-methylcoumarin. These data suggest that 7-mercapto-4-methylcoumarin is a convenient new standard substrate for monitoring S-glucuronidation.  相似文献   

14.
A novel chemo-enzymatic synthetic method for UDP-α-6-N3-glucose was developed by combining the versatility of chemical synthesis and natural enzyme stereo-selectivity of Bifidobacterium longum (BLUSP). This flexible and efficient platform expanded the substrate scope for UDP-sugars on an improved scale, particularly for UDP-sugar substrates containing bioorthogonal functional groups.  相似文献   

15.
Uridine 5′-diphospho N-acetylglucosamine (UDP-GlcNAc) is an important nucleotide sugar in the biochemistry of all living organisms, and it is an important substrate in the synthesis of oligosaccharides. In the present work, three bioactive enzymes, namely, glucokinase (YqgR), GlcNAc-phosphate mutase (Agm1), and N-acetylglucosamine-1-phosphate uridyltransferase (GlmU), were produced effectively as soluble form in recombinant Escherichia coli. These three enzymes and dried yeast together were used to construct a multistep enzymatic system, which could produce UDP-GlcNAc efficiently with N-acetylglucosamine (GlcNAc) as the substrate. After the optimization of various reaction conditions, 31.5 mMUDP-GlcNAc was produced from 50 mMGlcNAc and 50 mMUMP.  相似文献   

16.
Hyaluronan synthase (HAS) utilizes UDP-GlcUA and UDP-GlcNAc in the presence of Mg(2+) to form the GAG hyaluronan (HA). The purified HAS from Streptococcus equisimilis (seHAS) shows high fidelity in that it only polymerizes the native substrates, UDP-GlcNAc and UDP-GlcUA. However, other uridinyl nucleotides and UDP-sugars inhibited enzyme activity, including UDP-GalNAc, UDP-Glc, UDP-Gal, UDP-GalUA, UMP, UDP, and UTP. Purified seHAS was approximately 40% more active in 25 mM, compared to 50 mM, PO(4) in the presence of either 50 mM NaCl or KCl, and displayed a slight preference for KCl over NaCl. The pH profile was surprisingly broad, with an effective range of pH 6.5-11.5 and the optimum between pH 9 and 10. SeHAS displayed two apparent pK(a) values at pH 6.6 and 11.8. As the pH was increased from approximately 6.5, both K(m) and V(max) increased until pH approximately 10.5, above which the kinetic constants gradually declined. Nonetheless, the overall catalytic constant (120/s) was essentially unchanged from pH 6.5 to 10.5. The enzyme is temperature labile, but more stable in the presence of substrate and cardiolipin. Purified seHAS requires exogenous cardiolipin for activity and is very sensitive to the fatty acyl composition of the phospholipid. The enzyme was inactive or highly activated by synthetic cardiolipins containing, respectively, C14:0 or C18:1(Delta9) fatty acids. The apparent E(act) for HA synthesis is 40 kJ (9.5 kcal/mol) disaccharide. Increasing the viscosity by increasing concentrations of PEG, ethylene glycol, glycerol, or sucrose inhibited seHAS activity. For PEGs, the extent of inhibition was proportional to their molecular mass. PEGs with average masses of 2.7, 11.7, and 20 kg/mol caused 50% inhibition of V(max) at 21, 6.5, and 3.5 mM, respectively. The apparent K(i) values for ethylene glycol, glycerol, and sucrose were, respectively, 4.5, 3.3, and 1.2 mM.  相似文献   

17.
Abstract: The effects of substrates m -tyramine and β-phenethylamine, as well as cocaine, on the DA efflux from a cell line stably expressing the human norepinephrine transporter (hNET) were investigated by using rotating disk electrode voltammetry. Both the substrates and cocaine induced apparent DA efflux in a concentration-dependent manner. Their EC50 values for inducing DA efflux were similar to their IC50 values for inhibiting DA uptake. The substrate-induced DA efflux was inhibited by various NET blockers, enhanced by raising the internal [Na+] with Na+,K+-ATPase inhibition, but was insensitive to membrane potential-altering agents valinomycin, veratridine, and high [K+]. The initial rate of m -tyramine-induced DA efflux was related to preloaded [DA] in a manner defined by a Michaelis-Menten expression. In contrast, DA efflux in the presence of cocaine displayed a much slower efflux rate, lower efficacy, was not stimulated by elevated internal [Na+], and was nonsaturable with preloaded [DA]. Single exponential kinetic analysis of the entire time course of the DA efflux showed that the apparent first-order rate constant for m -tyramine-induced DA efflux declined with increased preloaded [DA], whereas that for the DA efflux in the presence of cocaine was unchanged with varying preloaded [DA]. These results suggest that the substrates stimulate the NET-dependent DA efflux by increasing the accessibility of the NET to internal DA, whereas cocaine "uncovers" NET-independent DA efflux by reducing the accessibility of diffused/leaked external DA to the NET.  相似文献   

18.
Nucleotide sugar transporters (NST) mediate the transfer of nucleotide sugars from the cytosol into the lumen of the endoplasmatic reticulum and the Golgi apparatus. Because the NSTs show similarities with the plastidic phosphate translocators (pPTs), these proteins were grouped into the TPT/NST superfamily. In this study, a member of the NST-KT family, AtNST-KT1, was functionally characterized by expression of the corresponding cDNA in yeast cells and subsequent transport experiments. The histidine-tagged protein was purified by affinity chromatography and reconstituted into proteoliposomes. The substrate specificity of AtNST-KT1 was determined by measuring the import of radiolabelled nucleotide mono phosphates into liposomes preloaded with various unlabelled nucleotide sugars. This approach has the advantage that only one substrate has to be used in a radioactively labelled form while all the nucleotide sugars can be provided unlabelled. It turned out that AtNST-KT1 represents a monospecific NST transporting UMP in counterexchange with UDP-Gal but did not transport other nucleotide sugars. The AtNST-KT1 gene is ubiquitously expressed in all tissues. AtNST-KT1 is localized to Golgi membranes. Thus, AtNST-KT1 is most probably involved in the synthesis of galactose-containing glyco-conjugates in plants.  相似文献   

19.
Homogenates of Chironomus cells synthesize chitin as effectively as intact cells. Chitin is produced in a dose-dependent manner, when GlcN, GlcNAc, or UDP-GlcNAc is used as precursor. Due to the lability of UDP-GlcNAc incorporation of this substrate is underestimated. No allosteric effect is observed when GlcN or GlcNAc is used as a substrate. Chitin synthesis is stimulated by Mg2+ and inhibited by uridine monophosphate (UMP), uridine diphosphate (UDP), and uridine triphosphate (UTP). The apparent temperature optimum is 30°C, the apparent pH optimum is 5.5–6. Addition of the chitinase inhibitor allosamidin does not enhance chitin synthesis significantly. The time course of chitin formation reveals a lag period of about 12 h, which can be overcome by trypsin treatment. Addition of protease inhibitors prevents chitin synthesis.  相似文献   

20.
Conjugation of natural bilirubin (BR) depends on a hepatic microsomal UDP-glycosyltransferase using UDP-Glc, UDP-xylose, and predominantly UDP-GlcA. We found that esterification of BR occurred when washed intact microsomes derived from rat or guinea pig liver were incubated with BR in the absence of added UDP-sugar. This endogenous esterification was shown to lead predominantly to formation of the two positional isomers of BR monoglucoside and displayed the same regioselectivity as found for the BR monoglucosides formed by microsomes incubated with a saturating concentration of added UDP-Glc. This finding and absence of endogenous esterification in liver microsomes from mutant rats lacking BR UDP-glycosyltransferase activities demonstrated that endogenous esterification depended on UDP-glycosyltransferase and indicated, therefore, that UDP-Glc was present in the intact microsomal vesicles. With UDP-Glc added to the extramicrosomal incubation medium, BR glucosidation was markedly enhanced when the membrane permeability barrier was disrupted by pretreatment of the microsomes with detergent, sonication, or Staphylococcus aureus alpha-toxin. In contrast, such membrane disruption resulted in abolishment of endogenous esterification of BR, and a direct relationship was found between impairment of endogenous esterification and degree of vesicle disruption, suggesting that the UDP-Glc on which endogenous esterification depended was present in the lumenal space of the microsomes. Kinetic evidence and absence of an effect of increasing the microsomal concentration of dolichol-P-Glc (Dol-P-Glc) on endogenous esterification excluded direct or indirect involvement of Dol-P-Glc in the endogenous esterification reaction. Preincubation of intact microsomes with UDP-Glc or UDP-xylose at 37 degrees C, but not at 0 degrees C, led to expansion of the microsomal UDP-sugar pool on which endogenous esterification depended, suggesting that both UDP-sugars can enter the microsomal vesicles by a temperature-dependent mechanism. In contrast to these findings, no increase of BR esterification was detected when the microsomes had been preincubated at 37 degrees C with UDP-GlcA. We conclude that native, intact microsomes contain a lumenal pool of endogenous UDP-Glc and that BR UDP-glucosyltransferase and UDP-xylosyltransferase, by virtue of a lumenal orientation, have direct access to the postulated intramicrosomal pool of nucleotide sugar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号