首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We determined the configuration of lungs and chest in six healthy young subjects using anteroposterior and lateral technetium-99m-labeled scintigraphic images obtained in upright and in 90 degree head-down posture at 0, 25, 50, 75, and 100% vital capacity (VC). The lung shape was evaluated from curves relating vertical height vs. cumulative volume of 20 apicodiaphragmatic lung zones of equal height. S-shaped curves were obtained, which, after size normalization, were largely independent of volume or posture (P greater than 0.1). However, the apical zones tended to become relatively wider and the diaphragmatic zones relatively smaller with increasing volume, especially between 0 and 25% VC in upright posture and 0-50% VC in head-down posture. Changing posture from upright to head-down also tended to slightly widen the apical zones and to narrow the diaphragmatic zones, which is in line with a greater intrathoracic penetration of the diaphragm/abdomen. The shape of the chest was evaluated from the ratio of the transverse-thoracic and anteroposterior distances over height. These ratios did not clearly change with posture (P greater than or equal to 0.05) but increased by approximately 30% with decreasing volume (P less than 0.01). The fact that these shape changes of the chest were not accompanied by similar changes in lung shape can be explained mainly by widening of the mediastinum when volume decreases. In conclusion, the shape of the lung and chest are similar in head-down and upright humans, in contrast to the reversal of the apicodiaphragmatic differences in alveolar expansion and in transpulmonary pressure.  相似文献   

2.
Pressures were measured at two levels in the esophagus in 14 young healthy subjects performing slow inspiratory and expiratory vital capacity (VC) maneuvers in upright and head-down posture (180 degrees body tilt). In both postures, a gravitational pressure gradient was found, which increased very slightly with decreasing lung volumes (0.006 cmH2O X % VC-1 X cm descent-1) except for upright expiratory curves above 60% VC. The expiratory pressure gradient tended to be larger in head-down than in upright posture; however, during inspiration the opposite was true. In both postures the pressure change between 100 and 20% VC was smaller in the uppermost zone, which is consistent with the smaller changes in alveolar expansion in this zone. Also, in seven of the subjects, changes in cross-sectional area of the middle and lower part of the rib cage (HRC and LRC) and of the abdomen (ABD) were measured by respiratory inductive plethysmography in upright and head-down posture. The ratio of HRC motion to LRC motion was constant throughout the VC and did not change with posture, yet the ratio of ABD motion to mean RC motion changed with overall volume and was also larger in head-down than in upright posture. In conclusion, the changes in esophageal pressure gradient during slow VC maneuvers in head-down vs. upright posture were not related to (and thus not caused by) changes in chest wall configuration.  相似文献   

3.
Gravity-dependent changes of regional lung function were studied during normogravity, hypergravity, and microgravity induced by parabolic flights. Seven healthy subjects were followed in the right lateral and supine postures during tidal breathing, forced vital capacity, and slow expiratory vital capacity maneuvers. Regional 1) lung ventilation, 2) lung volumes, and 3) lung emptying behavior were studied in a transverse thoracic plane by functional electrical impedance tomography (EIT). The results showed gravity-dependent changes of regional lung ventilation parameters. A significant effect of gravity on regional functional residual capacity with a rapid lung volume redistribution during the gravity transition phases was established. The most homogeneous functional residual capacity distribution was found at microgravity. During vital capacity and forced vital capacity in the right lateral posture, the decrease in lung volume on expiration was larger in the right lung region at all gravity phases. During tidal breathing, the differences in ventilation magnitudes between the right and left lung regions were not significant in either posture or gravity phase. A significant nonlinearity of lung emptying was determined at normogravity and hypergravity. The pattern of lung emptying was homogeneous during microgravity.  相似文献   

4.
To examine the mechanical effects of the abdominal and triangularis sterni expiratory recruitment that occurs when anesthetized dogs are tilted head up, we measured both before and after cervical vagotomy the end-expiratory length of the costal and crural diaphragmatic segments and the end-expiratory lung volume (FRC) in eight spontaneously breathing animals during postural changes from supine (0 degree) to 80 degrees head up. Tilting the animals from 0 degree to 80 degrees head up in both conditions was associated with a gradual decrease in end-expiratory costal and crural diaphragmatic length and with a progressive increase in FRC. All these changes, however, were considerably larger (P less than 0.005 or less) postvagotomy when the expiratory muscles were no longer recruited with tilting. Alterations in the elastic properties of the lung could not account for the effects of vagotomy on the postural changes. We conclude therefore that 1) by contracting during expiration, the canine expiratory muscles minimize the shortening of the diaphragm and the increase in FRC that the action of gravity would otherwise introduce, and 2) the end-expiratory diaphragmatic length and FRC in upright dogs are thus actively determined. The present data also indicate that by relaxing at end expiration, the expiratory muscles make a substantial contribution to tidal volume in upright dogs; in the 80 degrees head-up posture, this contribution would amount to approximately 60% of tidal volume.  相似文献   

5.
We studied the effects on aerosol bolus inhalations of small changes in convective inhomogeneity induced by posture change from upright to supine in nine normal subjects. Vital capacity single-breath nitrogen washout tests were used to determine ventilatory inhomogeneity change between postures. Relative to upright, supine phase III slope was increased 33 +/- 11% (mean +/- SE, P < 0.05) and phase IV height increased 25 +/- 11% (P < 0.05), consistent with an increase in convective inhomogeneity likely due to increases in flow sequencing. Subjects also performed 0.5-microm-particle bolus inhalations to penetration volumes (V(p)) between 150 and 1,200 ml during a standardized inhalation from residual volume to 1 liter above upright functional residual capacity. Mode shift (MS) in supine posture was more mouthward than upright at all V(p), changing by 11.6 ml at V(p) = 150 ml (P < 0.05) and 38.4 ml at V(p) = 1,200 ml (P < 0.05). MS and phase III slope changes correlated positively at deeper V(p). Deposition did not change at any V(p), suggesting that deposition did not cause the MS change. We propose that the MS change results from increased sequencing in supine vs. upright posture.  相似文献   

6.
Changes in plasma volume were studied in subjects who underwent 42 days of head-down bed rest or a one hour change in posture between upright and head-down tilt. Changes in hematocrit and heomoglobin concentration were also measured. Results are presented and discussed in terms of physiological adaptation to postural changes.  相似文献   

7.
We studied 10 healthy nonsmokers and 8 healthy smokers, in both the upright and supine position, to investigate whether regional differences in respiratory clearance of technetium-99m-labeled diethylenetriamine pentaacetic acid 99mTc-DTPA (RC-DTPA) existed and to assess the influence of posture and smoking on the regional RC-DTPA. RC-DTPA was assessed by the lung clearance rates (%/min) of aerosolized 99mTc-DTPA (0.8 micron MMD; 2.4 GSD), using data corrected for recirculating radioactivity, in the upper (zone 1), middle (zone 2), and lower (zone 3) posterior lung fields. In nonsmokers, RC-DTPA in zone 1 was faster than in zone 2 or 3 in both the upright (P less than 0.001) and supine positions (P less than 0.0). No effect was produced by changes in posture on the regional RC-DTPA. In smokers, RC-DTPA was increased in all zones compared with the nonsmokers (P = 0.004), with a further increase in RC-DTP in zone 1 in the upright posture compared with the other regions (P less than 0.001). We conclude that in nonsmokers regional RC-DTPA is faster in zone 1 than in other zones, and this is not related to recirculation of radioactivity; posture does not modify the regional RC-DTPA of nonsmokers; smoking increases RC-DTPA in all zones and more in zone 1 in the upright posture.  相似文献   

8.
Lung function during and after prolonged head-down bed rest.   总被引:3,自引:0,他引:3  
We determined the effects of prolonged head-down tilt bed rest (HDT) on lung mechanics and gas exchange. Six subjects were studied in supine and upright postures before (control), during [day 113 (D113)], and after (R + number of days of recovery) 120 days of HDT. Peak expiratory flow (PF) never differed between positions at any time and never differed from controls. Maximal midexpiratory flow (FEF(25-75%)) was lower in the supine than in the upright posture before HDT and was reduced in the supine posture by about 20% between baseline and D113, R + 0, and R + 3. The diffusing capacity for carbon monoxide corrected to a standardized alveolar volume (volume-corrected DL(CO)) was lower in the upright than in the supine posture and decreased in both postures by 20% between baseline and R + 0 and by 15% between baseline and R + 15. Pulmonary blood flow (Q(C)) increased from R + 0 to R + 3 by 20 (supine) and 35% (upright). As PF is mostly effort dependent, our data speak against major respiratory muscle deconditioning after 120 days of HDT. The decrease in FEF(25-75%) suggests a reduction in elastic recoil. Time courses of volume-corrected DL(CO) and Q(C) could be explained by a decrease in central blood volume during and immediately after HDT.  相似文献   

9.
Data on the shape of the chest wall at total lung capacity (TLC) and functional residual capacity (FRC) were used as boundary conditions in an analysis of the deformation of the dog lung. The lung was modeled as an elastic body, and the deformation of the lung from TLC to FRC caused by the change in chest wall shape and gravity were calculated. Parenchymal distortions, distributions of regional volume at FRC as a fraction of the volume at TLC, and distributions of surface pressure at FRC are reported. In the prone dog there are minor variations in fractional volume along the cephalocaudal axis. In transverse planes opposing deformations are caused by the change of shape of the transverse section and the gravitational force on the lung, and the resultant fractional volume and pleural pressure distributions are nearly uniform. In the supine dog, there is a small cephalocaudal gradient in fractional volume, with lower fractional volume caudally. In transverse sections the heart and abdomen extend farther dorsally at FRC, squeezing the lung beneath them. The gradients in fractional volume and pleural pressure caused by shape changes are in the same direction as the gradients caused by the direct gravitational force on the lung, and these two factors contribute about equally to the large resultant vertical gradients in fractional volume and pleural pressure. In the prone position the heart and upper abdomen rest on the rib cage. In the supine posture much of their weight is carried by the lung.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
To clarify the effects of respiration on left ventricular (LV) dimensions and shortening, we studied chronically instrumented dogs with endocardial sonomicrometer crystals in the anterior-posterior (AP), septal to lateral (SL), and long axes (LA) following pericardiectomy. Ten anesthetized dogs were examined during spontaneous unobstructed respiration, partial inspiratory obstruction (PIO), and Mueller maneuvers (MM). During unobstructed inspiration, end-diastolic dimensions (EDD) demonstrated a significant increase in the AP and a similar decrease in the SL axis (i.e., noncongruent shape changes). During PIO only the SL EDD diminished significantly, while no significant changes occurred in any EDD during MM. Individual dogs also demonstrated noncongruent shape changes at end systole during inspiration. However, the end-systolic dimensions for the entire group demonstrated a significant increase in one dimension during each inspiratory mode with no significant changes in the other two axes suggesting an increased ventricular volume. Regional shortening declined only in the SL axis during both unobstructed respiration and PIO. Spontaneous sighs with large tidal volumes, yet smaller changes in pleural pressure than during the MM, were associated with marked noncongruent shape changes in both diastole and systole. We conclude that 1) estimates of LV volumes during respiration based on only one or two axes and assuming regional congruent shape changes may be misleading; and 2) lung volume changes can affect LV geometry independently of changes in pleural pressure.  相似文献   

11.
To determine alveolar pressure-volume relationships, alveolar three-dimensional reconstructions were prepared from lungs fixed by vascular perfusion at various points on the pressure-volume curve. Lungs from male Sprague-Dawley rats were fixed by perfusion through the pulmonary artery following a pressure-volume maneuver to the desired pressure point on either the inflation or deflation curve. Tissue samples from lungs were serially sectioned for determination of the volume fraction of alveoli and alveolar ducts and reconstruction of alveoli. Alveoli from lungs fixed at 5 cmH2O on the deflation curve (approximating functional residual volume) had a volume of 173 X 10(3) microns3, a surface area of 11,529 microns2, a mouth opening diameter of 72.7 microns, and a mean caliper diameter of 91.8 micron (SE). Alveolar shape changes during deflation from total lung capacity to residual volume was first (30 to 10 cmH2O) associated with little change in the diameter of the alveoli (102.7 +/- 2.4 to 100.3 +/- 3.3 microns). In the range overlapping normal breathing (10 to 0 cmH2O) there was a substantial decrease in diameter (100.3 +/- 3.3 to 43.3 +/- 2.3 microns). These measurements and others made on the relative changes in the dimensions of the alveolus suggest that the elastic network, particularly around the alveolar ducts, are predominant in determining lung behavior near the volume expansion limits of the lung while the elastic and surface tension properties of the alveoli are predominant in the volume range around functional residual capacity.  相似文献   

12.
We measured regional lung volumes from apex to base in humans during changes in thoracoabdominal shape which we monitored with magnetometers. In erect subjects, voluntary changes of shape at FRC did not change regional volume distribution. In supine subjects, the effect of negative pressure applied to the abdomen and a similar thoracoabdominal configuration achieved by voluntary means were studied. The distribution of regional volumes in both situations was the same as that measured during relaxation at the same overall lung volumes. We concluded that neither voluntary changes in shape nor negative abdominal pressure influenced the human pleural pressure gradient. This result, which differed from findings in animals, was probably because the human chest was relatively stiff and behaved with one degree of freedom; all parts of the human rib cage changed dimensions proportionally while negative abdominal pressure distorted the rib cage of animals.  相似文献   

13.
If esophageal and chest wall recordings of diaphragmatic electromyographic activity (EMG) accurately reflect neural drive to this muscle, then compound muscle action potentials (CMAPs) produced by supramaximal stimulation of the phrenic nerve should not alter with changes in diaphragmatic position. Maximal CMAPs were therefore recorded 1) during changes in lung volume from near residual volume to near total lung capacity, 2) during isovolume maneuvers at different lung volumes, and 3) while subjects were lying, sitting, and standing. The areas of maximal CMAPs recorded with the gastroesophageal catheter increased 5.1 +/- 3.6 times (mean +/- SD) between these volumes, increased 2.4 +/- 1.3 times as the diaphragm descended during an isovolume maneuver (at functional residual capacity), and increased 4.4 +/- 2.4 times between the lying and standing positions. Because the stimuli were supramaximal, these changes in EMG reflect changes in the relationship between the esophageal electrodes and the diaphragmatic muscle fibers. Artifactual changes were also documented for surface electrodes on the chest wall. Because of these positional changes in maximal CMAPs, previous studies, which used integrated diaphragmatic EMG to document "reflex" changes in neural drive, should be reevaluated.  相似文献   

14.
Although recent high-resolution studies demonstrate the importance of nongravitational determinants for both pulmonary blood flow and ventilation distributions, posture has a clear impact on whole lung gas exchange. Deterioration in arterial oxygenation with repositioning from prone to supine posture is caused by increased heterogeneity in the distribution of ventilation-to-perfusion ratios. This can result from increased heterogeneity in regional blood flow distribution, increased heterogeneity in regional ventilation distribution, decreased correlation between regional blood flow and ventilation, or some combination of the above (Wilson TA and Beck KC, J Appl Physiol 72: 2298-2304, 1992). We hypothesize that, although repositioning from prone to supine has relatively small effects on overall blood flow and ventilation distributions, regional changes are poorly correlated, resulting in regional ventilation-perfusion mismatch and reduction in alveolar oxygen tension. We report ventilation and perfusion distributions in seven anesthetized, mechanically ventilated pigs measured with aerosolized and injected microspheres. Total contributions of pulmonary structure and posture on ventilation and perfusion heterogeneities were quantified by using analysis of variance. Regional gradients of posture-mediated change in ventilation, perfusion, and calculated alveolar oxygen tension were examined in the caudocranial and ventrodorsal directions. We found that pulmonary structure was responsible for 74.0 +/- 4.7% of total ventilation heterogeneity and 63.3 +/- 4.2% of total blood flow heterogeneity. Posture-mediated redistribution was primarily oriented along the caudocranial axis for ventilation and along the ventrodorsal axis for blood flow. These mismatched changes reduced alveolar oxygen tension primarily in the dorsocaudal lung region.  相似文献   

15.
Upright posture and lower body negative pressure (LBNP) both induce reductions in central blood volume. However, regional circulatory responses to postural changes and LBNP may differ. Therefore, we studied regional blood flow and blood volume changes in 10 healthy subjects undergoing graded lower-body negative pressure (-10 to -50 mmHg) and 8 subjects undergoing incremental head-up tilt (HUT; 20 degrees , 40 degrees , and 70 degrees ) on separate days. We continuously measured blood pressure (BP), heart rate, and regional blood volumes and blood flows in the thoracic, splanchnic, pelvic, and leg segments by impedance plethysmography and calculated regional arterial resistances. Neither LBNP nor HUT altered systolic BP, whereas pulse pressure decreased significantly. Blood flow decreased in all segments, whereas peripheral resistances uniformly and significantly increased with both HUT and LBNP. Thoracic volume decreased while pelvic and leg volumes increased with HUT and LBNP. However, splanchnic volume changes were directionally opposite with stepwise decreases in splanchnic volume with LBNP and stepwise increases in splanchnic volume during HUT. Splanchnic emptying in LBNP models regional vascular changes during hemorrhage. Splanchnic filling may limit the ability of the splanchnic bed to respond to thoracic hypovolemia during upright posture.  相似文献   

16.
The low-viscosity bolus method was used to determine the longitudinal distributions of vascular resistance and intravascular pressure with respect to cumulative vascular volume from the lobar artery to the lobar vein in isolated dog lung lobes near functional residual capacity under zone 3 conditions. We found that the resistance distribution had two modes, a larger one upstream and a smaller one downstream from a local minimum. Over the range of vascular pressures studied the total vascular resistance decreased and the vascular volume increased with increasing vascular pressure. However, the shape of the normalized resistance distribution was independent of vascular pressure. Comparisons of the resistance distributions with the distributions of arterial, capillary, and venous volumes suggest that the modes represent regions of relatively high resistance proximal and distal to the capillary bed. These results are consistent with the concept that within the lobar vascular bed the highest resistance per unit blood volume is in the smallest arteries and veins, as suggested by morphometric data from other sources.  相似文献   

17.
We measured the lengths and diameters of four long bones from 118 terrestrial carnivoran species using museum specimens. Though intrafamilial regressions scaled linearly, nearly all intraordinal regressions scaled non-linearly. The observed non-linear scaling of bone dimensions within this order results from a systematic decrease in intrafamilial allometric slope with increasing body size. A change in limb posture (more upright in larger species) to maintain similar peak bone stresses may allow the nearly isometric scaling of skeletal dimensions observed in smaller sized mammals (below about 100 kg). However, strong positive allometry is consistently observed in a number of large terrestrial mammals (the largest Carnivora, the large Bovidae, and the Ceratomorpha). This suggests that the capacity to compensate for size increases through alteration of limb posture is limited in extremely large-sized mammals, such that radical changes in bone shape are required to maintain similar levels of peak bone stress.  相似文献   

18.
Conflicting results have been reported on the changes in the distribution of pleural pressures caused by alterations of chest shape. To understand better the effect of shape and size of lung and chest wall on the distribution of stresses, strains, and surface pressures, we analyzed a theoretical model using the technique of finite elements. The study was in two parts. First we investigated the effects of changing the chest wall shape during expansion, and second we studied lungs of a variety of inherent shapes and sizes. We found that, in general, the distributions of alveolar size, mechanical stresses, and surface pressures in the lungs were dominated by the weight of the lung and that changing the shape of the lung or chest wall had relatively little effect. Only at high states of expansion where the lung was very stiff did changing the shape of the chest wall cause substantial changes. Altering the inherent shape of the lung generally had little effect but the topographical differences in stresses and surface pressures were approximately proportional to lung height. The results are generally consistent with those found in dog by Hoppin et al. (J. Appl. Physiol. 27: 863-873, 1969).  相似文献   

19.
Normal subjects have a larger diffusing capacity normalized per liter alveolar volume (DL/VA) in the supine than in the sitting position. Body position changes total lung diffusing capacity (DL), DL/VA, membrane conductance (Dm), and effective pulmonary capillary blood volume (Qc) as a function of alveolar volume (VA). These functions were studied in 37 healthy volunteers. DL/VA vs. VA yields a linear relationship in sitting as well as in supine position. Both have a negative slope but usually do not run parallel. In normal subjects up to 50 yr old DL/VA and DL increased significantly when subjects moved from a sitting to a supine posture at volumes between 50 and 100% of total lung capacity (TLC). In subjects greater than 50 yr old the responses of DL/VA and DL to change in body position were not significant at TLC. Functional residual capacity (FRC) decreases and DL/VA increases in all normal subjects when they change position from sitting to supine. When DL/VA increases more than predicted from the DL/VA vs. VA relationship in a sitting position, we may infer an increase in effective Qc in the supine position. In 56% of the volunteers, supine DL was smaller than sitting DL despite a higher DL/VA at FRC in the supine position because of the relatively larger decrease in FRC. When the positional response at TLC is studied, an estimation obtained accidentally at a volume lower than TLC may influence results. Above 80% of TLC, Dm decreased significantly from sitting to supine. Below this lung volume the decrease was not significant. The relationship between Qc and VA was best described by a second-order polynomial characterized by a maximum Qc at a VA greater than 60% of TLC. Qc was significantly higher in the supine position than in the sitting position, but the difference became smaller with increasing age. In observing the sitting and supine positions, we saw a decrease in maximum Qc normalized per square meter of body surface area with age.  相似文献   

20.
Effect of position and lung volume on upper airway geometry   总被引:7,自引:0,他引:7  
The occurrence of upper airway obstruction during sleep and with anesthesia suggests the possibility that upper airway size might be compromised by the gravitational effects of the supine position. We used an acoustic reflection technique to image airway geometry and made 180 estimates of effective cross-sectional area as a function of distance along the airway in 10 healthy volunteers while they were supine and also while they were seated upright. We calculated z-scores along the airway and found that pharyngeal cross-sectional area was smaller in the supine than in the upright position in 9 of the 10 subjects. For all subjects, pharyngeal cross-sectional area was 23 +/- 8% smaller in the supine than in the upright position (P less than or equal to 0.05), whereas glottic and tracheal areas were not significantly altered. Because changing from the upright to the supine position causes a decrease in functional residual capacity (FRC), six of these subjects were placed in an Emerson cuirass, which was evacuated producing a positive transrespiratory pressure so as to restore end-expiratory lung volume to that seen before the position change. In the supine posture an increase in end-expiratory lung volume did not change the cross-sectional area at any point along the airway. We conclude that pharyngeal cross-sectional area decreases as a result of a change from the upright to the supine position and that the mechanism of this change is independent of the change in FRC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号