首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
荆玉栋  周骏翔 《遗传》2019,41(1):85-87
氨基酸代谢紊乱是一类遗传性代谢病,绝大多数属于常染色体隐性遗传病。高赖氨酸血症即是其中一种比较罕见的氨基酸代谢病,分I型和II型。I型患者血液中赖氨酸浓度偏高,但是症状不明显。II型患者血液中除赖氨酸浓度升高外,酵母氨酸浓度也会增高,患者会表现出严重的神经损伤和发育迟缓,多数患者在成年之前死亡。目前的研究对人体内的赖氨酸主要降解途径——酵母氨酸途径已经比较清楚:双功能酶α-氨基半醛合酶(α-aminoadipic semialdehyde synthase,AASS)是该途径主要的催化酶.  相似文献   

2.
苦马豆素(swainsonine,SW)是由小花棘豆等疯草植物中内生真菌通过酵母氨酸还原酶催化产生的一种吲哚里西啶生物碱,牲畜过量采食含SW的疯草植物会中毒,但是SW具有抗肿瘤和免疫调节活性等医学作用。文中以小花棘豆内生真菌野生株OW7.8及其酵母氨酸还原酶基因缺失突变株M1为研究对象,在固体培养基中添加酵母氨酸、α-氨基己二酸、赖氨酸和哌啶酸培养内生真菌野生株和突变株,利用高效液相色谱-质谱联用(HPLC-MS)技术测定SW,比较不同培养时间下内生真菌野生株和突变株中SW合成动态变化,并对所得数据用统计学软件进行方差分析。研究结果显示:对照组OW7.8中SW含量高于M1;添加前体物可提高菌体内SW的含量;不同前体对SW合成的影响不同,其中添加哌啶酸对SW影响最大。统计学分析结果表明:菌株(基因型)、添加前体化合物对真菌SW合成均有显著影响。  相似文献   

3.
葡萄糖-6-磷酸脱氢酶与6-磷酸葡萄糖酸脱氢酶是植物戊糖磷酸途径中的两个酶.在克隆了水稻质体葡萄糖-6-磷酸脱氢酶基因OsG6PDH2和质体6-磷酸葡萄糖脱氢酶基因Os6PGDH2基础上,分析比较了水稻胞质和质体葡萄糖-6-磷酸脱氢酶基因和6-磷酸葡萄糖酸脱氢酶基因的基因结构、表达特性和进化地位.结合双子叶模式植物拟南芥两种酶基因的分析结果,认为高等植物葡萄糖-6-磷酸脱氢酶基因和6-磷酸葡萄糖酸脱氢酶基因在进化方式上截然不同,葡萄糖-6-磷酸脱氢酶的胞质基因与动物和真菌等真核生物具有共同的祖先;6-磷酸葡萄糖酸脱氢酶的胞质酶和质体酶基因都起源于原核生物的内共生.讨论了植物葡萄糖-6-磷酸脱氢酶与6-磷酸葡萄糖酸脱氢酶基因可能的进化模式,为高等植物及质体的进化起源提供了新的资料.  相似文献   

4.
葡萄糖-6-磷酸脱氢酶与6-磷酸葡萄糖酸脱氢酶是植物戊糖磷酸途径中的两个关键酶。在克隆了水稻质体葡萄糖-6-磷酸脱氢酶基因OsG6PDH2和质体6-磷酸葡萄糖脱氢酶基因Os6PGDH2基础上,分析比较了水稻胞质和质体葡萄糖-6-磷酸脱氢酶基因和6-磷酸葡萄糖酸脱氢酶基因的基因结构、表达特性和进化地位。结合双子叶模式植物拟南芥两种酶基因的分析结果,认为高等植物葡萄糖-6-磷酸脱氢酶基因和6-磷酸葡萄糖酸脱氢酶基因在进化方式上截然不同,葡萄糖-6-磷酸脱氢酶的胞质基因与动物和真菌等真核生物具有共同的祖先;6-磷酸葡萄糖酸脱氢酶的胞质酶和质体酶基因都起源于原核生物的内共生。讨论了植物葡萄糖-6-磷酸脱氢酶与6-磷酸葡萄糖酸脱氢酶基因可能的进化模式,为高等植物及质体的进化起源提供了新的资料。  相似文献   

5.
γ-亚麻酸作为人体必需的不饱和脂肪酸,对人体的激素调节及脂肪酸代谢发挥着重要的生理作用.△6-脂肪酸脱氢酶是多不饱和脂肪酸合成途径中的限速酶.本文介绍了不饱和脂肪酸γ-亚麻酸代谢途径中的关键酶△6-脂肪酸脱氢酶的结构功能与目前△6-脂肪酸脱氢酶的基因工程研究进展,并对其应用进行了展望,以期为利用基因工程手段生产γ-亚麻酸提供参考.  相似文献   

6.
赖氨酸是人类食品和动物饲料的重要组成部分。然而,它在玉米里的含量极低,而玉米又是动物饲料的主要来源。对此,杜邦公司科学家们通过把细菌(对赖氨酸终产物反应不敏感)赖氨酸合成途径中的突变体基因导入canola和大豆,从而获得了富含高赖氨酸含量的canola和大豆种子。  相似文献   

7.
【目的】以金针菇全基因组测序数据为基础研究其L-赖氨酸的从头合成途径及其关键基因。【方法】采用Illumina Hiseq2000和Roche454 FLX+两种方法完成金针菇单孢菌株Dan3的基因组测序,基于全基因组序列筛选金针菇中赖氨酸生物合成的关键基因,并分析这些基因编码的蛋白质基本理化性质;预测其亚细胞定位情况及蛋白的二级结构。【结果】金针菇Dan3全基因组序列长度为34.17 Mb,预测到8个参与α-氨基己二酸途径的关键基因,这些基因都含有多个内含子和外显子,二级结构主要由α-螺旋和无规则卷曲组成,有3个蛋白定位于线粒体。【结论】金针菇是通过α-氨基己二酸途径合成赖氨酸,基因组中预测到与该途径相关的几乎所有的酶。  相似文献   

8.
对籽莲红花建莲(Nelumbonuciferacv.Honghuajianlian)和白心湘莲(N.nuciferacv.Baixinxianglian)杂交而成的幼胚的子叶、胚轴及幼胚叶(芽)形成的愈伤组织,施以赖氨酸加苏氨酸胁迫培养30天,从中筛选出抗性愈伤组织并形成再生植株。低浓度的赖氨酸加苏氨酸促进愈伤组织的生长,而高浓度的赖氨酸加苏氨酸则抑制愈伤组织生长,直至具有致死作用,这种致死作用是因为高浓度的赖氨酸加苏氨酸抑制了天冬氨酸合成途径中的天冬氨酸激酶和高丝氨酸脱氢酶造成的,细胞发生变异后对赖氨酸和苏氨酸产生了抗性,即与天冬氨酸合成途径有关的氨基酸增加。抗性愈伤组织与未胁迫的愈伤组织的氨基酸测定表明,在总计17种氨基酸中,抗性愈伤组织有14种氨基酸含量超过原始愈伤组织,1种持平,2种不及原始愈伤组织。再生抗性植株的莲籽氨基酸测定显示,在17种氨基酸中,有12种超过母本红花建莲,15种超过父本白心湘莲。  相似文献   

9.
赖氨酸是人体和哺乳动物的必需氨基酸,必须从食物中补充。赖氨酸具有重要的营养生理功能,在医药、食品和饲料工业中应用广泛。本文综述赖氨酸的生理功能、应用与生产、赖氨酸在细菌中的生物合成与调控、高产赖氨酸生产菌株的育种方法及应用。目前高产L-赖氨酸的菌株选育技术主要包括诱变技术、基因重组和基因敲除技术等。改良现有菌种和发掘、筛选新的菌种,利用微生物发酵法大量生产L-赖氨酸,具有广阔的市场前景。  相似文献   

10.
△8途径是合成多不饱和脂肪酸的替代途径,△8-脂肪酸脱氢酶是该途径的关键酶之一.根据已报道的△8-脂肪酸脱氢酶基因设计引物,分别从小眼虫藻基因组DNA和cDNA中扩增得到该基因片段,序列分析表明:结构基因长1 266 bp,编码421个氨基酸;该基因没有内含子,比已经报道的△8-脂肪酸脱氢酶基因长6bp,并且N末端序列也有所不同.利用酿酒酵母的载体pYES2.0构建△8-脂肪酸脱氢酶表达载体pYEFD,并转化到营养缺陷型酿酒酵母菌株INVSc1中,在选择培养基中筛选得到酿酒酵母转化菌株YD8.YD8在合适的培养条件下,添加外源底物二十碳二烯酸和二十碳三烯酸并诱导基因表达.脂肪酸甲酯气相色谱分析表明小眼虫藻△8-脂肪酸脱氢酶基因在酿酒酵母中获得了高效表达,将二十碳二烯酸和二十碳三烯酸分别转化成二高-γ-亚麻酸和二十碳四烯酸,其底物转化率分别达到了31.2%和46.3%.  相似文献   

11.
Methanobacterium thermoautotrophicum, an archaebacterium, possesses the first and last enzymes of the diaminopimelic acid pathway for lysine biosynthesis, dihydrodipicolinate synthase, and diaminopimelate decarboxylase. It does not have saccharopine dehydrogenase, the last enzyme of the aminoadipate pathway for lysine biosynthesis. The dihydrodipicolinate synthase is inhibited but not repressed by lysine. We conclude that this microbe uses the diaminopimelate pathway for synthesis of lysine.Deceased.  相似文献   

12.
Lysine supplementation of the growth medium of a wild type strain of the yeast Saccharomycopsis lipolytica specifically results in saccharopine dehydrogenase repression. Starvation of the strain for histidine triggers a general depression of various histidine, leucine, arginine and lysine biosynthetic enzymes, including saccharopine dehydrogenase. These two types of control, specific and general, act independently on saccharopine dehydrogenase expression, since mutants which fail to respond to the specific control still are sensitive to the general one. These mutants were first selected as unable to catabolize lysine, suggesting that a link may exist between saccharopine dehydrogenase specific regulation and activity of the catabolic pathway.  相似文献   

13.
The alpha-aminoadipate pathway for the biosynthesis of lysine is present only in fungi and euglena. Until now, this unique metabolic pathway has never been investigated in the opportunistic fungal pathogens Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus. Five of the eight enzymes (homocitrate synthase, homoisocitrate dehydrogenase, alpha-aminoadipate reductase, saccharopine reductase, and saccharopine dehydrogenase) of the alpha-aminoadipate pathway and glucose-6-phosphate dehydrogenase, a glycolytic enzyme used as a control, were demonstrated in wild-type cells of these organisms. All enzymes were present in Saccharomyces cerevisiae and the pathogenic organisms except C. neoformans 32608 serotype C, which exhibited no saccharopine reductase activity. The levels of enzyme activity varied considerably from strain to strain. Variation among organisms was also observed for the control enzyme. Among the pathogens, C. albicans exhibited much higher homocitrate synthase, homoisocitrate dehydrogenase, and alpha-aminoadipate reductase activities. Seven lysine auxotrophs of C. albicans and one of Candida tropicalis were characterized biochemically to determine the biochemical blocks and gene-enzyme relationships. Growth responses to alpha-aminoadipate- and lysine-supplemented media, accumulation of alpha-aminoadipate semialdehyde, and the lack of enzyme activity revealed that five of the mutants (WA104, WA153, WC7-1-3, WD1-31-2, and A5155) were blocked at the alpha-aminoadipate reductase step, two (STN57 and WD1-3-6) were blocked at the saccharopine dehydrogenase step, and the C. tropicalis mutant (X-16) was blocked at the saccharopine reductase step. The cloned LYS1 gene of C. albicans in the recombinant plasmid YpB1078 complemented saccharopine dehydrogenase (lys1) mutants of S. cerevisiae and C. albicans. The Lys1+ transformed strains exhibited significant saccharopine dehydrogenase activity in comparison with untransformed mutants. The cloned LYS1 gene has been localized on a 1.8-kb HindIII DNA insert of the recombinant plasmid YpB1041RG1. These results established the gene-enzyme relationship in the second half of the alpha-aminoadipate pathway. The presence of this unique pathway in the pathogenic fungi could be useful for their rapid detection and control.  相似文献   

14.
Catabolism of lysine through the pipecolate, saccharopine and cadaverine pathways has been investigated in L3 and adult Haemonchus contortus and Teladorsagia circumcincta. Both enzymes of the saccharopine pathway (lysine ketoglutarate reductase (LKR) and saccharopine dehydrogenase (SDH)) were active in L3 and adult worms of both species. All three enzymes which catabolise lysine to α-amino adipic semialdehyde via pipecolate (lysine oxidase (LO), Δ(1)-piperideine-2-carboxylate reductase (Pip2CR) and pipecolate oxidase (PipO)) were present in adult worms, whereas the pathway was incomplete in L3 of both species; Pip2CR activity was not detected in the L3 of either parasite species. In adult worms, the saccharopine pathway would probably be favoured over the pipecolate pathway as the K(m) for lysine was lower for LKR than for LO. Neither lysine dehydrogenase nor lysine decarboxylase activity was detected in the two parasite species. Enzyme activities and substrate affinities were higher for all five enzymes in adult worms than in L3. An unexpected finding was that both LKR and SDH were dual co-factor enzymes and not specific for either NAD(+) or NADP(+), as is the case in other organisms. This novel property of LKR/SDH suggests it could be a good candidate for anthelmintic targeting.  相似文献   

15.
16.
G Tang  D Miron  J X Zhu-Shimoni    G Galili 《The Plant cell》1997,9(8):1305-1316
In plant and mammalian cells, excess lysine is catabolized by a pathway that is initiated by two enzymes, namely, lysine-ketoglutarate reductase and saccharopine dehydrogenase. In this study, we report the cloning of an Arabidopsis cDNA encoding a bifunctional polypeptide that contains both of these enzyme activities linked to each other. RNA gel blot analysis identified two mRNA bands-a large mRNA containing both lysine-ketoglutarate reductase and saccharopine dehydrogenase sequences and a smaller mRNA containing only the saccharopine dehydrogenase sequence. However, DNA gel blot hybridization using either the lysine-ketoglutarate reductase or the saccharopine dehydrogenase cDNA sequence as a probe suggested that the two mRNA populations apparently are encoded by the same gene. To test whether these two mRNAs are functional, protein extracts from Arabidopsis cells were fractionated by anion exchange chromatography. This fractionation revealed two separate peaks-one containing both coeluted lysine-ketoglutarate reductase and saccharopine dehydrogenase activities and the second containing only saccharopine dehydrogenase activity. RNA gel blot analysis and in situ hybridization showed that the gene encoding lysine-ketoglutarate reductase and saccharopine dehydrogenase is significantly upregulated in floral organs and in embryonic tissues of developing seeds. Our results suggest that lysine catabolism is subject to complex developmental and physiological regulation, which may operate at gene expression as well as post-translational levels.  相似文献   

17.
Hydroxylysine acts as a growth inhibitor of Saccharomyces for a certain period of time. The inhibition is concentration-dependent and is reversed by a small amount of lysine in the medium. After the growth-inhibitory period, the wild-type cells are able to grow rapidly even in the presence of hydroxylysine. Both lysine auxotrophs and wild-type cells are unable to utilize hydroxylysine in place of lysine. Hydroxylysine, mimicking lysine, controls the biosynthesis of lysine and thereby limits the availability of biosynthetic lysine to the cells. Hydroxylysine affects the biosynthesis of lysine at a number of enzymatic steps. Accumulation of homocitric acid, the first intermediate of lysine biosynthesis, in the mutant strains 19B and A B9 is reduced significantly in the presence of hydroxylysine. Hydroxylysine, like lysine, exerts a significant inhibition in vitro on the homocitric acid-synthesizing activity. Enzymes following the alpha-aminoadipic acid step respond in a noncoordinate fashion to hydroxylysine. Level of the enzyme saccharopine reductase, but not of alpha-aminoadipic acid reductase or saccharopine dehydrogenase, is reduced significantly. These regulatory effects of hydroxylysine are similar to those observed for lysine.  相似文献   

18.
In plant seeds, the essential amino acid lysine auto-regulates its own level by modulating the activity of its catabolic enzyme lysine-ketoglutarate reductase via an intracellular signaling cascade, mediated by Ca2+ and protein phosphorylation/dephosphorylation. In the present report, it has been further tested whether the activity of soybean lysine-ketoglutarate reductase, as well as that of saccharopine dehydrogenase, the second enzyme in the pathway of lysine catabolism, are modulated by direct phosphorylation of the bifunctional polypeptide containing both of these linked activities. Incubation of purified lysine-ketoglutarate reductase/ saccharopine dehydrogenase with casein kinase II resulted in a significant phosphorylation of the bifunctional enzyme. Moreover, in vitro dephosphorylation of the bifunctional polypeptide with alkaline phosphatase significantly inhibited the activity of lysine-ketoglutarate reductase, but not of its linked enzyme saccharopine dehydrogenase. The inhibitory effect of alkaline phosphatase on lysine-ketoglutarate reductase activity was dramatically stimulated by binding of lysine to the enzyme. Our results suggest that in plant seeds, active lysine-ketoglutarate reductase is a phospho-protein, and that its activity is modulated by opposing actions of protein kinases and phosphatases. Moreover, this modulation is subject to a compound regulation by lysine.  相似文献   

19.
BACKGROUND: The biosynthesis of the essential amino acid lysine in higher fungi and cyanobacteria occurs via the alpha-aminoadipate pathway, which is completely different from the lysine biosynthetic pathway found in plants and bacteria. The penultimate reaction in the alpha-aminoadipate pathway is catalysed by NADPH-dependent saccharopine reductase. We set out to determine the structure of this enzyme as a first step in exploring the structural biology of fungal lysine biosynthesis. RESULTS: We have determined the three-dimensional structure of saccharopine reductase from the plant pathogen Magnaporthe grisea in its apo form to 2.0 A resolution and as a ternary complex with NADPH and saccharopine to 2.1 A resolution. Saccharopine reductase is a homodimer, and each subunit consists of three domains, which are not consecutive in amino acid sequence. Domain I contains a variant of the Rossmann fold that binds NADPH. Domain II folds into a mixed seven-stranded beta sheet flanked by alpha helices and is involved in substrate binding and dimer formation. Domain III is all-helical. The structure analysis of the ternary complex reveals a large movement of domain III upon ligand binding. The active site is positioned in a cleft between the NADPH-binding domain and the second alpha/beta domain. Saccharopine is tightly bound to the enzyme via a number of hydrogen bonds to invariant amino acid residues. CONCLUSIONS: On the basis of the structure of the ternary complex of saccharopine reductase, an enzymatic mechanism is proposed that includes the formation of a Schiff base as a key intermediate. Despite the lack of overall sequence homology, the fold of saccharopine reductase is similar to that observed in some enzymes of the diaminopimelate pathway of lysine biosynthesis in bacteria. These structural similarities suggest an evolutionary relationship between two different major families of amino acid biosynthetic pathway, the glutamate and aspartate families.  相似文献   

20.
Labelled saccharopine was synthesized and showed a low conversion to lysine in barley seedlings. The results indicate a role of saccharopine in either lysine biosynthesis or catabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号