首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Bovine adrenomedullary chromaffin cells in culture were incubated with reserpine or forskolin, two agents acting through different mechanisms, which increase cellular [Met]enkephalin levels by 2-fold after 72 h. Cells were harvested and chromaffin granules were purified on a linear sucrose gradient. After reserpine treatment, carboxypeptidase-processing enzyme specific activity in chromaffin granule fractions was stimulated 1.9-fold, and Co2+-stimulated carboxypeptidase specific activity was stimulated 3-fold. The increase in enzyme activity was dependent on the time of reserpine treatment. Forskolin, on the other hand, had no significant effect on carboxypeptidase activity. The differential effects of reserpine and forskolin suggest that the carboxypeptidase-processing enzyme may be selectively regulated during periods of elevated enkephalin formation. Kinetic studies revealed that in cells exposed to reserpine, the Km value for [Met]enkephalin-Arg6 for the Co2+-stimulated carboxypeptidase activity was lowered to 0.136 from 0.447 mM, but there was no change in the Km values of the non-Co2+-stimulated carboxypeptidase activity from reserpine and control groups. Cellular levels of immunoreactive carboxypeptidase-processing enzyme, measured by a radioimmunoassay method, were not altered after reserpine treatment. These data suggest that while the total number of carboxypeptidase enzyme molecules remained constant, there may be a conversion of existing enzyme molecules to a more active form which displays a higher affinity for [Met]enkephalin-Arg6 in the presence of Co2+.  相似文献   

2.
C Cherdchu  T D Hexum 《Life sciences》1988,43(13):1069-1077
Acute stimulation of bovine adrenal chromaffin cells in culture with 1,1-dimethyl-4-phenylpiperazinium (DMPP) gives rise to a significant increase in secretion of [Met5]-enkephalin immunoreactive material (ME-IRM) into the culture medium (1). Following this secretion the cellular ME-IRM levels do not decrease, suggesting the replenishment of the peptides. The repletion of the cellular ME-IRM appears to result from an increase in processing of large molecular weight peptides containing [Met5]-enkephalin and [Leu5]-enkephalin. Gel filtration chromatography on Bio-Gel P-10 was used to fractionate the enkephalin-like peptides (ELPs) present in the culture media and chromaffin cell extracts. Fractionation was done for samples before and after nicotinic receptor stimulation by DMPP to demonstrate the secretion and repletion of the ELPs. Gel chromatographic profiles of ELPs present in the culture media after DMPP stimulation revealed the presence of 4 peaks, representing different molecular forms of these peptides (Peaks 1-4), with a selective increase in secretion of Peaks 3 and 4. The chromatograms of ELPs extracted from cultured chromaffin cells showed similar patterns to those obtained from ELPs present in the culture medium after stimulation. Analyses of individual peaks after fractionation of cell culture extracts showed an increase in the amount of immunoreactive material found in Peak 4 with a concomitant decrease in the immunoreactivity found in the higher molecular weight peaks (Peaks 1-3). Further purification of Peak 4 from cell extracts on reversed-phase HPLC (RP-HPLC) showed a significant amount of ELPs existed as the sulfoxide derivative of [Met5]-enkephalin. The content of [Met5]-enkephalin sulfoxide (ME-O-enk) did not decrease following DMPP stimulation. We conclude that acute stimulation of nicotinic receptors in the chromaffin cells enhances the processing of proenkephalin precursors to keep pace with the secretion of low molecular weight peptides.  相似文献   

3.
Enkephalin convertase, the enkephalin-synthesizing carboxypeptidase B-like enzyme, has been purified to apparent homogeneity from bovine pituitary and adrenal chromaffin granule membranes. The membrane-bound enkephalin convertase can be solubilized in high yield with 0.5% Triton X-100 in the presence of 1 M NaCl. Extensive purification is achieved by affinity chromatography with p-aminobenzoyl-L-arginine linked to Sepharose 6B. Enzyme purified from both pituitary and adrenal chromaffin granule membranes shows a single band by sodium dodecyl sulfate polyacrylamide gel electrophoresis with an apparent molecular weight of 52,500, whereas enkephalin convertase purified from soluble extracts of these tissues has an apparent molecular weight of 50,000. The regional distribution of the membrane-bound enzyme in the rat brain differs from that of the soluble enzyme. While the soluble enzyme shows 10-fold variations, resembling somewhat the enkephalin peptides, membrane-bound enkephalin convertase is more homogeneously distributed throughout the brain. In rat pituitary glands, membrane-bound enzyme activity is similar in the anterior and posterior lobes, whereas the soluble enzyme is enriched in the anterior lobe. Membrane-bound and soluble forms of enkephalin convertase isolated from either bovine pituitary glands or adrenal chromaffin granules show identical substrate and inhibitor specificities. As with the soluble enzyme, membrane-bound enkephalin convertase hydrolyzes [Met]- and [Leu]enkephalin-Arg6 and -Lys6 to enkephalin, with no further degradation of the pentapeptide.  相似文献   

4.
Two peptidases which convert 125I-Lys-Arg-ME and 125I-ME-Arg6, respectively, to 125I-ME, have been identified and characterized in bovine adrenomedullary chromaffin granules. The former is referred to as a secretory granule peptidase (SGP) and the latter as a carboxypeptidase B-like enzyme (CPB-like) [7] which is here further characterized. SGP cleaved 125I-Lys-Arg-ME to produce only 125I-ME and was localized in chromaffin granules which contained co2+-stimulated CPB-like activity, ME, and catecholamines. Both the SGP and the CPB-like enzymes appear to be thiol-metalloproteases. While the CPB-like enzyme seems likely to be involved in processing the enkephalin precursors [7], SGP may function as a trypsin-like or aminopeptidase enzyme in secretory granules.  相似文献   

5.
Enkephalin convertase, an enkephalin-synthesizing carboxypeptidase present in adrenal medulla chromaffin granules, has also been detected in brain and pituitary. To determine whether these three carboxypeptidase activities represent the same enzyme, we purified and characterized enkephalin convertase from adrenal medulla, whole brain, and whole pituitary. Enzyme from all three tissues co-purifies on DEAE-cellulose, gel filtration, concanavalin A, and L-arginine affinity columns, resulting in a 135,000-fold, 110,000-fold, and 2,800-fold purification for bovine adrenal medulla, brain, and pituitary, respectively. Purified enkephalin convertase appears homogeneous on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, showing a single band with an apparent molecular weight of 50,000 for enzyme isolated from all three tissues. Adrenal, brain, and pituitary enkephalin convertase are similarly inhibited by hexapeptide enkephalin precursors and active site-directed inhibitors. Both [Met]-and [Leu]enkephalin-Arg6 inhibit enkephalin convertase with Ki values between 50 and 80 microM, while [Met]-and [Leu]enkephalin-Lys6 are 3-fold less potent. Two active site-directed inhibitors, guanidinopropylsuccinic acid and guanidinoethylmercaptosuccinic acid, are potent inhibitors of all three enzymes with Ki values of 8-9 nM. A series of dansylated di-, tri-, and tetrapeptide substrates are hydrolyzed by enkephalin convertase with similar kinetic properties (Km, Vmax, and Kcat/Km) for the three enzymes. This evidence suggests that enkephalin convertase activity represents the same enzyme in adrenal medulla, brain, and pituitary. Enkephalin convertase may be involved in the production of other peptide neurotransmitters and hormones besides enkephalin.  相似文献   

6.
A comparison of carboxypeptidase-processing enzyme activity and immunoreactivity showed that they were differentially distributed in soluble and membrane components of bovine adrenal medulla chromaffin granules. The majority of enzyme activity (80% of total activity in the granules) was present in the soluble fraction, but the number of enzyme molecules was distributed equally between the soluble and membrane fractions. When equivalent amounts of carboxypeptidase enzyme (ng of immunoreactivity) in each fraction were compared, the carboxypeptidase in the soluble component appeared to be five to six times more active than the membrane-bound form of the enzyme. The soluble and membrane components of the granules may represent populations of enzyme at different states of activation. This finding could have important implications for the regulation of the carboxypeptidase-processing enzyme.  相似文献   

7.
The primary structure of the 5300 dalton adrenal enkephalin-containing polypeptide was shown to contain at its carboxyl terminus the sequence -Lys-Arg-Tyr-Gly-Gly-Phe-Met-Arg-Gly-Leu-COOH (Jones et al., (1981) Proc. Natl. Acad. Sci. USA, in press). From knowledge of the type of processing that occurs at paired basic amino acid residues such as -Lys-Arg-, it was predicted that the octapeptide Tyr-Gly-Gly-Phe-Met-Arg-Gly-Leu should be produced and exist in free form in the adrenal gland. This octapeptide has now been purified from bovine adrenal chromaffin granules. Its structure was determined by amino acid analysis, carboxypeptidase Y time course hydrolysis and sequential digestion with trypsin and carboxypeptidase B. The octapeptide has 35% the opiate receptor binding activity of [Met]enkephalin.  相似文献   

8.
We have used antisera directed towards eight different portions of the proenkephalin molecule to examine the processing rates and patterns of proenkephalin-derived peptides in chromaffin cell cultures in the presence and absence of reserpine. Reserpine treatment produced profound effects on the molecular weight profile of nearly all enkephalin-containing peptides. Increased production of low molecular weight immunoreactive [Met5]enkephalin, [Leu5]enkephalin, [Met5]enkephalin-Arg6-Gly7-Leu8, and [Met5]enkephalin-Arg6-Phe7 was observed in reserpine-treated cultures; immunoreactivity corresponding to several intermediate sized enkephalin-containing peptides such as Peptide B and the high molecular weight [Met5]enkephalin-Arg6-Gly7-Leu8 immunoreactive peptide was decreased. The production of two amidated opioid peptides, amidorphin and metorphamide, was greatly accelerated in the presence of reserpine. The increased levels of low molecular weight enkephalins could not be accounted for by assuming decreased basal release. These results indicate that reserpine treatment is able to increase the extent of post-translational processing of proenkephalin within chromaffin cells.  相似文献   

9.
Brain endopeptidase generates enkephalin from striatal precursors   总被引:1,自引:0,他引:1  
An enzyme capable of converting putative opioid peptide intermediates to free enkephalin has been purified 300-fold from washed rat brain membranes. The action of this enzyme, an enkephalin-generating endopeptidase (EGE), was compared with the action of carboxypeptidase B after trypsin treatment on enkephalin precursor peptides present in rat striata. After Sephadex G-100 gel filtration of striatal material, fractions were radioimmunoassayed for enkephalin content using an antiserum specific for the carboxyl terminal of enkephalin. Additionally, aliquots of the column fractions were treated with either trypsin and carboxypeptidase B, trypsin and EGE, or EGE alone. The peak of enkephalin immunoreactivity increased with the enzymes' treatment indicating the conversion of the low molecular weight proenkephalin precursor peptides to enkephalin. Trypsin and EGE generated almost as much enkephalin as trypsin and carboxypeptidase B in the conditions of the experiment. Thus EGE is capable of processing precursors to enkephalin after the action of trypsin-like enzyme(s) in the brain. The gel filtration fractions containing enkephalin and its low molecular weight precursors were pooled and one-half treated with EGE. The contents were analyzed by HPLC and the increase in immunoreactivity co-eluted with enkephalin and Leu-enkephalin. Small peptides found to be the most potent competitive inhibitors of this enzyme are Met-Arg-Phe-Ala, and Met-Arg-Phe.  相似文献   

10.
Proteolytic processing of inactive proenkephalin and proneuropeptides is essential for the production of biologically active enkephalins and many neuropeptides. The incomplete processing of proenkephalin in adrenal medulla suggests that endogenous protease inhibitors may inhibit proenkephalin processing enzymes. This study demonstrates the isolation and characterization of two isoforms of adrenal medullary alpha1-antichymotrypsin (ACT), referred to as ACT-like proteins I and II, which are colocalized with enkephalin in chromaffin granules and which inhibit the proenkephalin processing enzyme known as prohormone thiol protease (PTP). Subcellular fractionation demonstrated enrichment of 56- and 60-kDa ACT-like proteins I and II, respectively, to enkephalin-containing chromaffin granules (secretory vesicles). Immunofluorescence cytochemistry of chromaffin cells indicated a discrete, punctate pattern of ACT immunostaining that resembles that of [Met]enkephalin that is stored in secretory vesicles. Chromatography of adrenal medullary extracts through DEAE-Sepharose and chromatofocusing resulted in the separation of ACT-like proteins I and II that possess different isoelectric points of 5.5 and 4.0, respectively. The 56-kDa ACT-like protein I was purified to apparent homogeneity by Sephacryl S200 chromatography; the 60-kDa ACT-like protein II was isolated by butyl-Sepharose, Sephacryl S200, and concanavalin A-Sepharose columns. The proenkephalin processing enzyme PTP was potently inhibited by ACT-like protein I, with a K(i,app) of 35 nM, but ACT-like protein II was less effective. ACT-like proteins I and II had little effect on chymotrypsin. These results demonstrate the biochemical identification of two secretory vesicle ACT-like proteins that differentially inhibit PTP. The colocalization of the ACT-like proteins and PTP within chromaffin granules indicates that they could interact in vivo. Results from this study suggest that these ACT-like proteins may be considered as candidate inhibitors of PTP, which could provide a mechanism for limited proenkephalin processing in adrenal medulla.  相似文献   

11.
Enkephalin-like immunoreactive amacrine cells were visualized using the highly sensitive avidin-biotin method. The somas of these cells were situated in the inner nuclear and ganglion cell layers. Enkephalin-stained processes were observed in layers 1, 3, and 5 of the inner plexiform layer. The biosynthesis of sulfur-containing compounds in the goldfish retina was studied by means of a pulse-chase incubation with 35S-methionine. A 35S-labeled compound, which comigrated with authentic Met5-enkephalin on high-performance liquid chromatography (HPLC), was synthesized and was bound competitively by antibodies to enkephalin and by opiate receptors. This compound was tentatively identified as "Met5-enkephalin." The newly synthesized 35S-Met5-enkephalin was released upon depolarization of the retina with a high K+ concentration. This K+-stimulated release was greatly suppressed by 5 mM Co2+, suggesting that the release was Ca2+ dependent. Using a double-label technique, enkephalin immunoreactivity and gamma-aminobutyric acid (GABA) uptake were colocalized to some amacrine cells, whereas others labeled only for enkephalin or GABA. The possible significance of enkephalin-GABA interactions is also discussed.  相似文献   

12.
Thiol and aspartyl proteolytic activities in isolated secretory vesicles of neural (NL) and intermediate (IL) lobes of bovine pituitary were characterized with heterologous enkephalin and tachykinin precursor substrates, 35S-(Met)-preproenkephalin and 35S-(Met)-beta-preprotachykinin. IL and NL secretory vesicles contained thiol-dependent proteolytic activity that cleaved the enkephalin precursor with a pH optimum of 4.5; this activity resembled a novel "prohormone thiol protease' previously purified and characterized from adrenal medulla chromaffin granules. IL and NL vesicles also demonstrated aspartyl proteolytic activity with acidic pH optimum, as shown by pepstatin A inhibition of tachykinin and enkephalin precursor cleaving activity. This activity may be related to a previously characterized chromaffin granule aspartyl protease (CGAP) related to cathepsin D (2), as indicated by the presence of immunoreactive CGAP in NL secretory vesicles by anti-CGAP immunoblots. These results show that pituitary secretory vesicles, like chromaffin granules, may contain similar thiol-dependent and aspartyl proteolytic activities.  相似文献   

13.
Recent evidence indicates that osmotic forces may play a role in exocytosis. To examine this possibility and to investigate the osmotic properties of storage granules within cells, we investigated the effects of changes of osmolality on stability and function of cultured bovine chromaffin cells. Cell volume measurements indicated that the cells behaved as osmometers and that the intracellular osmolality rapidly equilibrated with the osmolality of the extracellular medium. Hyperosmotic solutions strongly inhibited nicotinic agonist-stimulated secretion but did not alter nicotinic agonist-stimulated Ca(2+) uptake. Hyperosmotic solutions also strongly inhibited elevated potassium- stimulated secretion but only weakly inhibited elevated K(+)-stimulated Ca(2+) uptake. Thus, hyperosmotic solutions inhibited secretion at a step after calcium entry. Cells exposed to 165 mOs(1) solutions did not lyse and retained their capacity to store and secrete catecholamine upon stimulation. Significant intracellular lysis of chromaffin granules occurred within cells exposed to lower osmolalities. In contrast, 75 percent of the catecholamine was released from granules from cultured cells or from fresh adrenal medulla incubated in vitro at 210 mOs. The data provide evidence for a role for osmotic forces in exocytosis and suggest that if osmotic stress of the granule occurs during exocytosis, then water influx into chromaffin granules increases granule volume by at least 70 percent. The results also indicate that the osmotic properties of the granules are altered upon homogenization and subcellular fractionation of the cells.  相似文献   

14.
The diadenosine polyphosphates--Ap4A and Ap5A--were released from perfused bovine adrenal glands and recently isolated chromaffin cells by the action of carbachol. The H.P.L.C. technique reported here allowed the quantification of pmol amounts of these compounds present in biological samples from the perfusion media after stimulation. Both compounds (Ap4A and Ap5A) were identified by the retention time in H.P.L.C. chromatography, co-elution with standards, re-chromatography and destruction by the phosphodiesterase action. Bovine adrenal glands stimulated with 100 microM carbachol released 0.47 +/- 0.12 nmol/gland of Ap4A and 1.11 +/- 0.26 nmol/gland of Ap5A. Isolated bovine chromaffin cells after 100 microM carbachol, as secretagogue, released 11.1 +/- 0.8 pmol/10(6) cells of Ap4A and 15.8 +/- 1.1 pmol/10(6) cells of Ap5A. The ratio of these compounds with respect to the exocytotically released ATP and catecholamines was in the same order as that found in isolated chromaffin granules.  相似文献   

15.
Acute stimulation of chromaffin cells in cultures with acetylcholine (ACh), 1,1-dimethyl-4-phenylpiperazinium (DMPP), or high potassium gave rise to a significant increase in the release of [Met5]-enkephalin immunoreactive material (ME-IRM) into the assay medium. The cellular content of ME-IRM following the actual release induced by these secretagogues remained constant suggesting the replenishment of the cellular peptides. The repletion of the peptides may occur through an enhancement of the processing rate of the proenkephalin precursor. Furthermore, the increase in secretion as well as the repletion of the cellular ME-IRM were calcium-dependent and were inhibited by the nicotinic receptor antagonist, hexamethonium, but not by atropine. These results indicate that secretion and repletion of the peptides are tightly coupled and activated by nicotinic receptor stimulation.  相似文献   

16.
Guinea pig adrenal, brain, and myenteric plexus have been shown to contain many polypeptides that yield free enkephalins on digestion with trypsin and carboxypeptidase B. The enkephalin-containing polypeptides (ECPs) range from 500 to >20,000 daltons and show similarities in their chromatographic behavior to the ECPs present in the chromaffin granules of the bovine adrenal medulla. Furthermore, the heptapeptide [Met]enkephalin-Arg6-Phe7, that is now known to represent the carboxyl terminal sequence of the proenkephalin found in bovine adrenal medulla (Gübler et al. (1982) Nature (London), in press), was identified in all three guinea pig tissues. It appears that processing of a proenkephalin similar to the one in adrenal medulla represents a general pathway for enkephalin biosynthesis in animal tissues.  相似文献   

17.
18.
Bovine adrenal chromaffin granules have been shown to contain [Met]enkephalin and [Leu]enkephalin and at least seven other small peptides that exhibit specific binding to opiate receptors. Six of these peptides have been characterized and their structures established as (O)-[Met]enkephalin, [Met]enkephalin-Arg6-Arg7, [Met]enkephalin-Lys6, [Met]enkephalin-Arg6, [Leu]enkephalin-Arg6, and [Met]enkephalin-Arg6-Phe7. Many of these hexa- and heptapeptides are also present in bovine and human brain. It is suggested that the presence of these peptides in a tissue is evidence of a common biosynthetic pathway of the enkephalins from a large precursor protein.  相似文献   

19.
The distribution and secretion of atrial natriuretic peptides (ANPs) were investigated in bovine adrenal medulla. (1) Cultured bovine adrenal medullary cells (2 x 10(6)/dish) contained 100.4 +/- 6.0 fmol of immunoreactive ANP (IR-ANP) and 207.3 +/- 6.6 nmol of catecholamines as epinephrine plus norepinephrine. (2) Stimulation of nicotinic but not muscarinic acetylcholine receptors caused a cosecretion of IR-ANP and catecholamines corresponding to the ratio of IR-ANP to catecholamines in cultured bovine adrenal medullary cells. (3) Carbachol-stimulated secretion of IR-ANP was dependent on the presence of extracellular Ca2+. (4) Chromaffin granules isolated from bovine adrenal medulla contained large amounts of IR-ANP and catecholamines, in the same ratio as did cultured adrenal medullary cells. (5) Reverse-phase HPLC analysis showed that both stored and secreted IR-ANP consisted of two components, which eluted at the position of ANP(99-126) or ANP(1-126). These results indicate that ANPs are stored as ANP(99-126) and ANP(1-126) in chromaffin granules, and are cosecreted in parallel with catecholamines in a Ca2+-dependent manner by the stimulation of nicotinic acetylcholine receptors.  相似文献   

20.
Carboxypeptidase H is one of several enzymes required for the processing of peptide hormone precursors. In this study, inhibition of carboxypeptidase H by its peptide products was investigated. Carboxypeptidase H activity in bovine adrenal medulla chromaffin granules and rat adrenal medulla homogenate was inhibited by the peptides Met- and Leu-enkephalin, vasopressin, oxytocin, luteinizing hormone-releasing hormone, substance P, and thyrotropin-releasing hormone, with oxytocin and ACTH 1-14 having the least effect, at concentrations of 2-20 mM. Inhibition by amidated peptide products (vasopressin, oxytocin, luteinizing hormone-releasing hormone, substance P, and thyrotropin-releasing hormone) show that the final products of the precursor processing pathway can regulate carboxypeptidase H. These levels of peptides are similar to known intragranular peptide concentrations indicating that product and feedback inhibition of carboxypeptidase H may play a role in the control of neuropeptide synthesis. The proenkephalin-derived peptides Met-enkephalin, Leu-enkephalin, Met-enkephalin-Arg6-Gly7-Leu8, and Met-enkephalin-Arg6-Phe7 competitively inhibited bovine and rat carboxypeptidase H with Ki values of 12.0, 6.5, 7.0, and 5.5 mM, respectively. The significantly greater Ki for Met-enkephalin may reflect the effects of higher intragranular concentration of Met-enkephalin, since one proenkephalin molecule contains four copies of Met-enkephalin and only one copy of each of the other enkephalin peptides. Thus, the products from one multivalent precursor molecule may equivalently inhibit carboxypeptidase H activity. Product inhibition of carboxypeptidase H and perhaps other processing enzymes may serve to limit the maximum peptide concentration within the secretory vesicle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号