首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The crystal structure of the dimeric steroid metabolizing enzyme, delta 5-3-ketosteroid isomerase (EC 5.3.3.1), has been solved to 6-A resolution by multiple isomorphous replacement, augmented by real space direct methods. The unit cell is hexagonal (space group P6122) with dimensions a = b = 65.4 A, c = 504 A, and contains four identical 13,400-dalton protomers in each of its 12 asymmetric units. The 504-A c axis required double focusing mirrors (Franks optics) to resolve the reflections. The complexity of the combined local and lattice symmetry necessitated direct methods to establish the positions of heavy atoms in even the simplest of the isomorphous derivatives. The electron density map clearly showed both (a) the elaborate packing scheme of protomers, which accounts for this large and complicated unit cell, and (b) the coarse features of the functional dimer. The steroid-binding site has been established by imaging the bound inhibitor, 4-acetoxymercuriestradiol, in a difference Fourier map. Each of the dimer's two steroid-binding sites lies completely within one subunit but close enough to the opposing subunit that functional interactions may be possible.  相似文献   

2.
Bacteriorhodopsin (bR) is an integral membrane protein which absorbs visible light and pumps protons across the cell membrane of Halobacterium salinarium. bR is one of the few membrane-bound pumps whose structure is known at atomic resolution. Changes in the protein structure of bR are a crucial element in the mechanism of proton pumping and can be followed by a variety of spectroscopic, and diffraction methods. A number of intermediates in the photocycle have been identified spectroscopically and a number of laboratories have been successful in reporting the structural changes taking place in the later stages of the photocycle over the millisecond time-scale using diffraction techniques. These studies have revealed significant changes in the protein structure, possibly involving changes in flexibility and/or movement of helices. Earlier intermediates which arise and decay on the picosecond to microsecond time-scale have proven more difficult to trap. Here, we report for the first time the successful trapping and diffraction analysis of bR in a low temperature state resembling the very early intermediate, K. We have calculated a projection difference map to 3.5 A resolution. The map reveals no significant structural changes in the molecule, despite having a very low background noise level. This does not rule out the possibility of movements in a direction perpendicular to the plane of the membrane. However, the data are consistent with other evidence that significant structural changes do not occur in the protein itself.  相似文献   

3.
The redox potentials of the oriented films of the wild-type, the E194Q-, E204Q- and D96N-mutated bacteriorhodopsins (bR), prepared by adsorbing purple membrane (PM) sheets or its mutant on a Pt electrode, have been examined. The redox potentials (V) of the wild-type bR were -470 mV for the 13-cis configuration of the retinal Shiff base in bR and -757 mV for the all-trans configuration in H(2)O, and -433 mV for the 13-cis configuration and -742 mV for the all-trans configuration in D(2)O. The solvent isotope effect (DeltaV=V(D(2)O)-V(H(2)O)), which shifts the redox potential to a higher value, originates from the cooperative rearrangements of the extensively hydrogen-bonded water molecules around the protonated C=N part in the retinal Schiff base. The redox potential of bR was much higher for the 13-cis configuration than that for the all-trans configuration. The redox potentials for the E194Q mutant in the extracellular region were -507 mV for the 13-cis configuration and -788 mV for the all-trans configuration; and for the E204Q mutant they were -491 mV for the 13-cis configuration and -769 mV for the all-trans configuration. Replacement of the Glu(194) or Glu(204) residues by Gln weakened the electron withdrawing interaction to the protonated C=N bond in the retinal Schiff base. The E204 residue is less linked with the hydrogen-bonded network of the proton release pathway compared with E194. The redox potentials of the D96N mutant in the cytoplasmic region were -471 mV for the 13-cis configuration and -760 mV for the all-trans configuration which were virtually the same as those of the wild-type bR, indicating that the D to N point mutation of the 96 residue had no influence on the interaction between the D96 residue and the C=N part in the Schiff base under the light-adapted condition. The results suggest that the redox potential of bR is closely correlated to the hydrogen-bonded network spanning from the retinal Schiff base to the extracellular surface of bR in the proton transfer pathway.  相似文献   

4.
L A Drachev  A D Kaulen 《FEBS letters》1992,313(3):248-250
The photocycles of the wild-type bacteriorhodopsin and the D96N mutant were investigated by the flash-photolysis technique. The M-intermediate formation (400 nm) and the L-intermediate decay (520 nm) were found to be well described by a sum of two exponents (time constants, tau 1 = 65 and tau 2 = 250 microseconds) for the wild-type bR and three exponents (tau 1 = 55 microseconds, tau 2 = 220 microseconds and tau 3 = 1 ms) for the D96N mutant of bR. A component with tau = 1 ms was found to be present in the photocycle of the wild-type bacteriorhodopsin as a lag-phase in the relaxation of photoresponses at 400 and 520 nm. In the presence of Lu3+ ions or 80% glycerol this component was clearly seen as an additional phase of M-formation. The azide effect on the D96N mutant of bR suggests that the 1-ms component is associated with an irreversible conformational change switching the Schiff base from the outward to the inward proton channel. The maximum of the difference spectrum of the 1-ms component of D96N bR is located at 404 nm as compared to 412 nm for the first two components. We suggest that this effect is a result of the alteration of the inward proton channel due to the Asp96-->Asn substitution. Proton release measured with pyranine in the absence of pH buffers was identical for the wild-type bR and D96N mutant and matched the M-->M' conformational transition. A model for M rise in the bR photocycle is proposed.  相似文献   

5.
Previous C13-NMR studies showed that two of the four internal aspartic acid residues (Asp-96 and Asp-115) of bacteriorhodopsin (bR) are protonated up to pH = 10, but no accurate pKa of these residues has been determined. In this work, infrared spectroscopy with the attenuated total reflection technique was used to characterize pH-dependent structural changes of ground-state, dark-adapted wild-type bacteriorhodopsin and its mutant (D96N) with aspartic acid-96 replaced by asparagine. Data indicated deprotonation of Asp-96 at high pH (pKa = 11.4 +/- 0.1), but no Asp-115 titration was observed. The analysis of the whole spectral region characteristic to complex conformational changes in the protein showed a more complicated titration with an additional pKa value (pKa1 = 9.3 +/- 0.3 and pKa2 = 11.5 +/- 0.2). Comparison of results obtained for bR and the D96N mutant of bR shows that the pKa approximately 11.5 characterizes not a direct titration of Asp-96 but a protein conformational change that makes Asp-96 accessible to the external medium.  相似文献   

6.
Crystallization of isoelectrically homogeneous cholera toxin   总被引:5,自引:0,他引:5  
Past difficulty in growing good crystals of cholera toxin has prevented the study of the crystal structure of this important protein. We have determined that failure of cholera toxin to crystallize well has been due to its heterogeneity. We have now succeeded in overcoming the problem by isolating a single isoelectric variant of this oligomeric protein (one A subunit and five B subunits). Cholera toxin purified by our procedure readily forms large single crystals. The crystal form (space group P2(1), a = 73.0 A, b = 92.2 A, c = 60.6 A, beta = 106.4 degrees, one molecule in the asymmetric unit) has been described previously [Sigler et al. (1977) Science (Washington, D.C.) 197, 1277-1278]. We have recorded data from native crystals of cholera toxin to 3.0-A resolution with our electronic area detectors. With these data, we have found the orientation of a 5-fold symmetry axis within these crystals, perpendicular to the screw dyad of the crystal. We are now determining the crystal structure of cholera toxin by a combination of multiple heavy-atom isomorphous replacement and density modification techniques, making use of rotational 5-fold averaging of the B subunits.  相似文献   

7.
A sensitive high-resolution electron diffraction assay for change in structure is described and harnessed to analyze the binding of divalent cations to the purple membrane (PM) of Halobacterium halobium. Low-dose electron diffraction patterns are subject to a matched filter algorithm (Spencer, S. A., and A. A. Kossiakoff. 1980. J. Appl. Crystallogr. 13:563-571). to extract accurate values of reflection intensities. This, coupled with a scheme to account for twinning and specimen tilt in the microscope, yields results that are sensitive enough to rapidly quantitate any structure change in PM brought about by site-directed mutagenesis to the level of less than two carbon atoms. Removal of tightly bound divalent cations (mainly Ca2+ and Mg2+) from PM causes a color change to blue and is accompanied by a severely altered photocycle of the protein bacteriohodopsin (bR), a light-driven proton pump. We characterize the structural changes that occur upon association of 3:1 divalent cation to PM, versus membranes rendered purple by addition of excess Na+. High resolution, low dose electron diffraction data obtained from glucose-embedded samples of Pb2+ and Na+ reconstituted PM preparations at room temperature identify several sites with total occupancy of 2.01 +/- 0.05 Pb2+ equivalents. The color transition as a function of ion concentration for Ca2+ or Mg2+ and Pb2+ are strictly comparable. A (Pb2(+)-Na+) PM Fourier difference map in projection was synthesized at 5 A using the averaged data from several nominally untilted patches corrected for twinning and specimen tilt. We find six major sites located on helices 7, 5, 4, 3, 2 (nomenclature of Engelman et al. 1980. Proc. Natl. Acad. Sci. USA. 77:2023-2027) in close association with bR. These partially occupied sites (0.55-0.24 Pb2+ equivalents) represent preferential sites of binding for divalent cations and complements our earlier result by x-ray diffraction (Katre et al. 1986. Biophys. J. 50:277-284).  相似文献   

8.
The effects of glycyl-glycine and bis-trispropane buffers on the light-excited electric signals due to proton motion in the molecule were studied for the bacteriorhodopsin (bR) mutants D38R, D96N, E204Q, R227Q, D85N, D85T, R82Q/D85N, and D85N/D96N in purple membranes and for delipidated purple membrane containing the wild-type bR. The results show additional charge motion caused by the buffers in all cases. Arrhenius parameters calculated from the temperature dependence of the difference signals (with buffer minus without buffer) are similar to the parameters found for the wild-type bR in the case of these buffers: the values of the activation enthalpies are mostly in the range 25-50 kJ/mol; all the activation entropies are negative. The results are evaluated with the cluster hypothesis outlined previously.  相似文献   

9.
Two crystal forms of the putative catalytic domain (residues 1-140) of gamma delta resolvase from Escherichia coli have been obtained. Type I is isomorphous with crystals of the intact protein, and type II is suitable for high resolution structure analysis. Type II crystals belong to the orthorhombic space group C222(1), with a = 76.8 A, b = 191.3 A, and c = 63.4 A. They contain two molecules (15,500 daltons each)/asymmetric unit and show diffraction beyond 2.7-A resolution. Calculation of a rotation function using 7-A data shows the orientation of the noncrystallographic axes.  相似文献   

10.
The preliminary structure of a glutaminase-asparaginase from Acinetobacter glutaminasificans is reported. The structure was determined at 3.0-A resolution with a combination of phase information from multiple isomorphous replacement at 4-5-A resolution and phase improvement and extension by two density modification techniques. The electron density map was fitted by a polypeptide chain that was initially polyalanine. This was subsequently replaced by a polypeptide with an amino acid sequence in agreement with the sizes and shapes of the side chain electron densities. The crystallographic R factor is 0.300 following restrained least squares refinement with data to 2.9-A resolution. The A. glutaminasificans glutaminase-asparaginase subunit folds into two domains: the aminoterminal domain contains a five-stranded beta sheet surrounded by five alpha helices, while the carboxyl-terminal domain contains three alpha helices and less regular structure. The connectivity is not fully determined at present, due in part to the lack of a complete amino acid sequence. The A. glutaminasificans glutaminase-asparaginase structure has been used successfully to determine the relative orientations of the molecules in crystals of Pseudomonas 7A glutaminase-asparaginase, in crystals of Vibrio succinogenes asparaginase, and in a new crystal form of Escherichia coli asparaginase (space group 1222, one subunit per asymmetric unit).  相似文献   

11.
Single crystal X-ray data were collected on film for the holoenzyme of lobster d-glyceraldehyde-3-phosphate dehydrogenase to 3·0 Å resolution. Films of potassium tetraiodomercurate, K2HgI4, comprising a complete low resolution set, with some additional high resolution terms, were given to us by Drs H. C. Watson and L. J. Banaszak. A 3·0 Å high resolution data set was collected of a p-chloromercuri-phenylsulfonate derivative. All these films were processed on a computer controlled Optronics film scanner. The K2HgI4 derivative difference Patterson was initially interpreted in terms of four single sites, one for each polypeptide chain, consistent with the previously determined molecular 222 symmetry. Single isomorphous replacement phases were then sufficient to identify other heavy atom sites. Least-squares refined parameters were used to give multiple isomorphous replacement phases at low resolution, and single isomorphous replacement phases at high resolution. The resultant electron density map was oriented along the molecular 2-fold axes and then averaged over all four equivalent subunits. This process produced a much improved electron density map, which could easily be interpreted in terms of a single polypeptide chain per subunit consistent with the known amino acid sequence. The use of non-crystallographic symmetry to improve the electron density map is equivalent to the molecular replacement method. A comparison is also made with other dehydrogenases.  相似文献   

12.
The human and simian immunodeficiency viruses (HIV and SIV) envelope glycoprotein consists of a trimer of two noncovalently and weakly associated subunits, gp120 and gp41. Upon binding of gp120 to cellular receptors, this labile native envelope complex undergoes conformational changes, resulting in a stable trimer-of-hairpins structure in gp41. Formation of the hairpin structure is thought to mediate membrane fusion by placing the viral and cellular membranes in close proximity. An in vitro-derived variant of SIVmac251, denoted CPmac, has acquired an unusually stable virion-associated gp120-gp41 complex. This unique phenotype is conferred by five amino acid substitutions in the gp41 ectodomain. Here we characterize the structural and physicochemical properties of the N40(L6)C38 model of the CPmac gp41 core. The 1.7-A resolution crystal structure of N40(L6)C38 is very similar to the six-helix bundle structure present in the parent SIVmac251 gp41. In both structures, three N40 peptides form a central three-stranded coiled coil, and three C38 peptides pack in an antiparallel orientation into hydrophobic grooves on the coiled-coil surface. Thermal unfolding studies show that the CPmac mutations destabilize the SIVmac251 six-helix bundle by 15 kJ/mol. Our results suggest that the formation of the gp41 trimer-of-hairpins structure is thermodynamically coupled to the conformational stability of the native envelope glycoprotein and raise the intriguing possibility that introduction of mutations to destabilize the six-helix bundle may lead to the stabilization of the trimeric gp120-gp41 complex. This study suggests a potential strategy for the production of stably folded envelope protein immunogens for HIV vaccine development.  相似文献   

13.
Manganese and iron superoxide dismutases are structural homologs   总被引:13,自引:0,他引:13  
The crystal structure of a tetrameric manganese superoxide dismutase from a thermophilic bacterium, Thermus thermophilus HB8, has been determined at 4.4-A resolution by local averaging of electron density maps calculated by isomorphous replacement. The spatial arrangement of the principal secondary structural features of iron superoxide dismutase is conserved in manganese dismutase. The structural homology is displayed by orienting the polypeptide chain of Escherichia coli Fe dismutase in the electron density map of Mn dismutase. Densities corresponding to bound Mn3+ occur at locations equivalent to the Fe3+ positions in iron dismutase, indicating one metal binding site per chain, or four sites per tetramer. The Mn tetramer, with 222 symmetry, is approximately rectangular in shape and appears to be constructed with only two unique interfaces. One set of interchain contacts closely resembles the dimer interface of Fe dismutase, but the other interface utilizes an inserted polypeptide segment that has no equivalent in Fe dismutase.  相似文献   

14.
The redox potentials of the oriented films of the wild-type, the E194Q-, E204Q- and D96N-mutated bacteriorhodopsins (bR), prepared by adsorbing purple membrane (PM) sheets or its mutant on a Pt electrode, have been examined. The redox potentials (V) of the wild-type bR were −470 mV for the 13-cis configuration of the retinal Shiff base in bR and −757 mV for the all-trans configuration in H2O, and −433 mV for the 13-cis configuration and −742 mV for the all-trans configuration in D2O. The solvent isotope effect (ΔV=V(D2O)−V(H2O)), which shifts the redox potential to a higher value, originates from the cooperative rearrangements of the extensively hydrogen-bonded water molecules around the protonated CN part in the retinal Schiff base. The redox potential of bR was much higher for the 13-cis configuration than that for the all-trans configuration. The redox potentials for the E194Q mutant in the extracellular region were −507 mV for the 13-cis configuration and −788 mV for the all-trans configuration; and for the E204Q mutant they were −491 mV for the 13-cis configuration and −769 mV for the all-trans configuration. Replacement of the Glu194 or Glu204 residues by Gln weakened the electron withdrawing interaction to the protonated CN bond in the retinal Schiff base. The E204 residue is less linked with the hydrogen-bonded network of the proton release pathway compared with E194. The redox potentials of the D96N mutant in the cytoplasmic region were −471 mV for the 13-cis configuration and −760 mV for the all-trans configuration which were virtually the same as those of the wild-type bR, indicating that the D to N point mutation of the 96 residue had no influence on the interaction between the D96 residue and the CN part in the Schiff base under the light-adapted condition. The results suggest that the redox potential of bR is closely correlated to the hydrogen-bonded network spanning from the retinal Schiff base to the extracellular surface of bR in the proton transfer pathway.  相似文献   

15.
Sasaki T  Demura M  Kato N  Mukai Y 《Biochemistry》2011,50(12):2283-2290
A light-driven proton pump bacteriorhodopsin (bR) forms a two-dimensional hexagonal lattice with about 10 archaeal lipids per monomer bR on purple membrane (PM) of Halobacterium salinarum. In this study, we found that the weakening of the bR-lipid interaction on PM by addition of alcohol can be detected as the significant increase of protein solubility in a nonionic detergent, dodecyl β-D-maltoside (DDM). The protein solubility in DDM was also increased by bR-lipid interaction change accompanied by structural change of the apoprotein after retinal removal and was about 7 times higher in the case of completely bleached membrane than that of intact PM. Interestingly, the cyclic and milliseconds order of structural change of bR under light irradiation also led to increasing the protein solubility and had a characteristic light intensity dependence with a phase transition. These results indicate that there is a photointermediate in which bR-lipid interaction has been changed by its dynamic structural change. Because partial delipidation of PM by CHAPS gave minor influence for the change of the protein solubility compared to intact PM in both dark and light conditions, it is suggested that specific interactions of bR with some lipids which remain on PM even after delipidation treatment have a key role for the change of solubility in DDM induced by alcohol binding, ligand release, and photon absorption on bR.  相似文献   

16.
The S variant of the human alpha 1-antitrypsin with E-264----V, is responsible for a mild alpha 1-antitrypsin deficiency quite common in the European population. S protein specifically cleaved at the susceptible peptide bond was crystallized and its crystal structure determined and refined to 3.1 A resolution. The S variant crystallizes isomorphous to the normal M variant. The difference Fourier electron density map shows the E----V change as outstanding residual density. In addition, small structural changes of the main polypeptide chain radiate from the site of mutation and affect parts far removed from it. By the mutation, internal hydrogen bonds and salt linkages of E-264 to Y-38 and K-487, respectively, are lost. They cause the far-reaching slight distortions and are probably related to the reduced thermal stability of the S mutant. They may also be responsible for slower folding of the polypeptide chain and the clinical symptoms of alpha 1-antitrypsin deficiency. In a theoretical study by molecular dynamics methods simulations of the M and S proteins were made and the results analysed with respect to structural and dynamic properties and compared with the experimental results. There is a significant correlation between experimental and theoretical results in some respects.  相似文献   

17.
The crystal structure of mandelate racemase (MR) has been solved at 3.0-A resolution by multiple isomorphous replacement and subsequently refined against X-ray diffraction data to 2.5-A resolution by use of both molecular dynamics refinement (XPLOR) and restrained least-squares refinement (PROLSQ). The current crystallographic R-factor for this structure is 18.3%. MR is composed of two major structural domains and a third, smaller, C-terminal domain. The N-terminal domain has an alpha + beta topology consisting of a three-stranded antiparallel beta-sheet followed by an antiparallel four alpha-helix bundle. The central domain is a singly wound parallel alpha/beta-barrel composed of eight central strands of beta-sheet and seven alpha-helices. The C-terminal domain consists of an irregular L-shaped loop with several short sections of antiparallel beta-sheet and two short alpha-helices. This C-terminal domain partially covers the junction between the major domains and occupies a region of the central domain that is filled by an eight alpha-helix in all other known parallel alpha/beta-barrels except for the barrel domain in muconate lactonizing enzyme (MLE) [Goldman, A., Ollis, D. L., & Steitz, T. A. (1987) J. Mol. Biol. 194, 143] whose overall polypeptide fold and amino acid sequence are strikingly similar to those of MR [Neidhart, D. J., Kenyon, G. L., Gerlt, J. A., & Petsko, G. A. (1990) Nature 347, 692]. In addition, the crystal structure reveals that, like MLE, MR is tightly packed as an octamer of identical subunits. The active site of MR is located between the two major domains, at the C-terminal ends of the beta-strands in the alpha/beta-barrel domain. The catalytically essential divalent metal ion is ligated by three side-chain carboxyl groups contributed by residues of the central beta-sheet. A model of a productive substrate complex of MR has been constructed on the basis of difference Fourier analysis at 3.5-A resolution of a complex between MR and (R,S)-p-iodomandelate, permitting identification of residues that may participate in substrate binding and catalysis. The ionizable groups of both Lys 166 and His 297 are positioned to interact with the chiral center of substrate, suggesting that both of these residues may function as acid/base catalysts.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Crystal structure of recombinant human interleukin-4.   总被引:2,自引:0,他引:2  
The crystal structure of recombinant human interleukin-4 (rhuIL-4) was initially determined at 3.5-A resolution by multiple isomorphous replacement techniques and subsequently refined to a resolution of 2.35 A by simulated annealing. The final crystallographic R-factor, based on all data in the range 6.0-2.35 A (7470 reflections), is 0.232. Bond lengths and bond angles in the molecule have root mean square deviations from ideal values of 0.016 A and 2.4 degrees, respectively. The overall structure is highly compact and globular with a predominantly hydrophobic core. The main structural feature of rhuIL-4 is a four alpha-helix bundle, which composes approximately 58% of the structure. The helices are arranged in a left-handed antiparallel bundle with two overhand connections. Within these connections is a two-stranded antiparallel beta-sheet. Both the tertiary and secondary structures of rhuIL-4 are similar to those of human granulocyte-macrophage colony-stimulating factor. Critical regions for receptor binding are proposed.  相似文献   

19.
Oda T  Namba K  Maéda Y 《Biophysical journal》2005,88(4):2727-2736
Knowledge of the phalloidin binding position in F-actin and the relevant understanding of the mechanism of F-actin stabilization would help to define the structural characteristics of the F-actin filament. To determine the position of bound phalloidin experimentally, x-ray fiber diffraction data were obtained from well-oriented sols of F-actin and the phalloidin-F-actin complex. The differences in the layer-line intensity distributions, which were clearly observed even at low resolution (8 A), produced well-resolved peaks corresponding to interphalloidin vectors in the cylindrically averaged difference-Patterson map, from which the radial binding position was determined to be approximately 10 A from the filament axis. Then, the azimuthal and axial positions were determined by single isomorphous replacement phasing and a cross-Patterson map in radial projection to be approximately 84 degrees and 0.5 A relative to the actin mass center. The refined position was close to the position found by prior researchers. The position of rhodamine attached to phalloidin in the rhodamine-phalloidin-F-actin complex was also determined, in which the conjugated Leu(OH)(7) residue was found to face the outside of the filament. The position and orientation of the bound phalloidin so determined explain the increase in the interactions between long-pitch strands of F-actin and would also account for the inhibition of phosphate release, which might also contribute to the F-actin stabilization. The method of analysis developed in this study is applicable for the determination of binding positions of other drugs, such as jasplakinolide and dolastatin 11.  相似文献   

20.
A mutant form of yeast RNA polymerase II that lacks the fourth and seventh largest subunits, referred to as pol II delta 4/7, crystallized on positively charged lipid layers. Both single-layered (two-dimensional) crystals and several multi-layered crystal forms were obtained. The two-dimensional crystals, preserved in negative stain, diffracted strongly to about 1/20 A-1 and more weakly to 1/13 A-1 resolution. A projection map computed from averaged Fourier transforms revealed four pol II delta 4/7 complexes per unit cell and further revealed a cleft on the surface of the complex similar to that previously observed in the structure of Escherichia coli RNA polymerase. One of the multi-layered crystal forms, preserved in negative stain, diffracted strongly beyond 1/15 A-1 resolution. Coherent diffraction from the multi-layered crystal is indicative of protein-protein interactions between layers and ordering in the third dimension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号