首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Melanoma is the deadliest form of skin cancer with rising incidence and mortality rates. Although early-stage melanoma is highly curable, advanced-stage melanoma is refractory to treatment. This underscores the importance of prevention and early detection as well as the need to improve treatment and prognostication of human melanoma. Elucidating the underlying mechanisms of the initi- ation and progression of human melanoma can help identify potential targets of intervention for prevention, diagnosis, therapy, and prognosis of this disease. Aberrant DNA methylation and histone modifications are the best-established epigenetic mechanisms of carcinogenesis. The occurrence of epigenetic changes prior to clinical diagnosis of cancer and their reversibility through pharmaco-logic/genetic approaches offer a promising avenue for basic and translational research on human melanoma. Candidate gene(s) or genome-wide aberrant DNA methylation and histone modifications have been observed in human melanoma tumor tissues and cell lines, and correlated to cellular and functional characteristics and/or clinicopathologicai features of this malignancy. The present review summarizes the published researches on aberrant DNA methylation and histone modifications in connection with human melanoma. Representative studies are highlighted to set forth the current state of knowledge, gaps in the knowledgebase, and future directions in these epigenetic fields of research. Examples of epigenetic therapy applied for human melanoma in vitro, and the challenges of its in vivo application for clinical treatment of solid tumors are discussed.  相似文献   

2.
The treatment of melanoma should be by radical surgical excision of the primary lesion and dissection of the regional nodes. Where possible this should be done in anatomic continuity; otherwise in physical discontinuity but at the same time. If maximum salvage is to be achieved the nodal dissection must be effected before there is clinical evidence of involvement by metastasis. Amputation of extremities should be reserved for cases in which there is evident metastasis between the original focus and the regional lymph node areas.  相似文献   

3.
4.
Melanoma, which is one of the most aggressive human tumours, originates from melanin-producing melanocytes. As no effective systemic therapy exists for advanced-stage melanoma, the best chance of recovery remains surgical removal of thin early-stage melanoma. Aberrant glycosylation is a hallmark of malignancy and a well-studied class of β1,6-branched oligosaccharides is associated with malignant transformation of rodent and human cells, and poor prognosis in cancer patients. It is evident that increased β1,6 branching significantly contributes to the phenotype of melanoma cells, influencing the adhesion to extracellular matrix components and motility as well as invasive and metastatic potential. Despite the considerable success in establishing the role of β1,6-branched N-linked oligosaccharides in melanoma biology, there is virtually no progress in using these glycans as a screening tool for the early diagnosis of the disease, or a target-specific therapeutic agent.  相似文献   

5.
We investigated the effects of ultrasound-mediated transfection (sonotransfection) of interferon β (IFN-β) gene on melanoma (C32) both in vitro and in vivo. C32 cells were sonotransfected with IFN-β in vitro. Subcutaneous C32 tumors in mice were sonicated weekly immediately after intra-tumor injection with IFN-β genes mixed with microbubbles. Successful sonotransfection with IFN-β gene in vitro was confirmed by ELISA, which resulted in C32 growth inhibition. In vivo, the growth ratio of tumors transfected with IFN-β gene was significantly lower than the other experimental groups. These results may lead to a new method of treatment against melanoma and other hard-to-treat cancers.  相似文献   

6.
Cytokine-based vaccines play a major part in tumor immuno-gene therapy. However, down-regulated antigen expression on tumor cells may diminish the immuno-potentiating aspects of cellular vaccines. In this study, we coexpressed a tumor antigen epitope with IFN- in the same gene by replacing the IFN- signal peptide with an antigen epitope-expressing signal peptide. We then investigated the effect of the antigen epitope-incorporated IFN- on the immunotherapy of murine melanoma B16 tumors. Results showed that TRP-2 epitope-expressing IFN- decreased B16 tumorigenicity and enhanced its immunogenicity after gene transfer. Protective immunity against wild type B16 tumors was induced by vaccination with IFN- transiently gene-modified tumor cells. These data suggest that cellular vaccines engineered to express an antigen epitope within an immunostimulatory cytokine could potentiate the immunization effect.  相似文献   

7.
8.
9.
Summary. The aim of this study was to evaluate the effect of pegylated interferon-alpha (PEG-IFN-α) on the plasma citrulline/arginine ratio, regarded as an index of nitric oxide (NO) synthesis, in patients with high-risk melanoma. Forty patients were randomly assigned to either PEG-IFN-α treatment (n = 22) or to observation only (control group, n = 18). The treatment group received 6 μg PEG-IFN-α/kg once a week during 8 weeks, followed by a maintenance dose of 3 μg/kg/wk. Blood was collected at different time points, plasma concentrations of citrulline and arginine were measured and the ratio of citrulline/arginine was calculated. Patients treated with PEG-IFN-α showed a significant decrease in the concentrations of citrulline and in the citrulline/arginine ratio during the whole study period, both compared to baseline values and to the control group. The data suggest that therapy with PEG-IFN-α results in a marked decrease in the synthesis of NO in melanoma patients.  相似文献   

10.
As DNA damage checkpoints are barriers to carcinogenesis, G2 checkpoint function was quantified to test for override of this checkpoint during melanomagenesis. Primary melanocytes displayed an effective G2 checkpoint response to ionizing radiation (IR)-induced DNA damage. Thirty-seven percent of melanoma cell lines displayed a significant defect in G2 checkpoint function. Checkpoint function was melanoma subtype-specific with “epithelial-like” melanoma lines, with wild type NRAS and BRAF displaying an effective checkpoint, while lines with mutant NRAS and BRAF displayed defective checkpoint function. Expression of oncogenic B-Raf in a checkpoint-effective melanoma attenuated G2 checkpoint function significantly but modestly. Other alterations must be needed to produce the severe attenuation of G2 checkpoint function seen in some BRAF-mutant melanoma lines. Quantitative trait analysis tools identified mRNA species whose expression was correlated with G2 checkpoint function in the melanoma lines. A 165 gene signature was identified with a high correlation with checkpoint function (p < 0.004) and low false discovery rate (≤ 0.077). The G2 checkpoint gene signature predicted G2 checkpoint function with 77–94% accuracy. The signature was enriched in lysosomal genes and contained numerous genes that are associated with regulation of chromatin structure and cell cycle progression. The core machinery of the cell cycle was not altered in checkpoint-defective lines but rather numerous mediators of core machinery function were. When applied to an independent series of primary melanomas, the predictive G2 checkpoint signature was prognostic of distant metastasis-free survival. These results emphasize the value of expression profiling of primary melanomas for understanding melanoma biology and disease prognosis.  相似文献   

11.
12.
13.
The tRNA present in swine melanoma tumor tissue and normal gray skin tissue were compared by aminoacylation of the unfractionated tRNA preparations. Of the seventeen amino acids studied, seven showed differences in rate of acceptance to tRNAs from normal and tumor tissues; the tRNAs of two amino acids, tyrosine and glycine, showed dramatic three fold increases in melanoma tumor. As melanin biosynthesis proceeds from tyrosine oxidation the investigations focused on the increase in tyrosine tRNA. Kinetic analysis of tyrosine aminoacylation to normal and melanoma tRNAs revealed no differences. Analysis of the isoaccepting species of tRNATyr from normal skin and melanoma tumor tissues identified three isoacceptors; tRNATyr, represented the predominant species in normal gray skin, while tRNA2Tyr predominated in melanoma tumor tissue. The tyrosine acceptances by tRNAs from three human melanoma cell lines were analyzed and found to be variable, but isoaccepting species analysis of the tRNATyr of these three cell lines still showed a correlation between the preponderance of tRNA2Tyr and extent of tyrosine acceptance. Additionally the enzymatic activity for the oxidation of tyrosine was found to be related to tyrosine acceptance and tRNA2Tyr predominance..  相似文献   

14.
Immune cytokines are important regulators of the immune response to neoplastic cells. We previously reported that interleukin 4 (IL-4) and either tumor necrosis factor α (TNF) or interferon γ (IFN) synergistically inhibit melanoma cell growth and induce cell differentiation. In the present study we used various combinations of IL-4, IFN and TNF to enhance the antigenicity of melanoma cells. IL-4 plus TNF significantly increased the ability of melanoma cells to stimulate cytotoxic T cells (CTL) and act as targets of these CTL; IL-4 plus IFN was somewhat less effective, while TNF plus IFN was not as effective. IL-4 plus TNF also increased the expression of HLA class I and HLA-DR antigens on melanoma cells. The CTL lines examined in this study were CD3+CD4+ and oligoclonal. These preclinical results suggest that the immune response to melanoma whole-cell vaccines might be enhanced by pretreating vaccine cells with IL-4 plus TNF.  相似文献   

15.
Metformin is the most widely used antidiabetic drug that belongs to the biguanide class. It is very well tolerated and has the major clinical advantage of not inducing hypoglycemia. Metformin decreases hepatic glucose production via a mechanism requiring liver kinase B1, which controls the metabolic checkpoint, AMP‐activated protein kinase‐mammalian target of rapamycin and neoglucogenic genes. The effects of metformin on this pathway results in reduced protein synthesis and cell proliferation. These observations have given the impetus for many investigations on the role of metformin in the regulation of tumor cell proliferation, cell‐cycle regulation, apoptosis, and autophagy. Encouraging results from these studies have shown that metformin could potentially be used as an efficient anticancer drug in various neoplasms such as prostate, breast, lung, pancreas cancers, and melanoma. These findings are strengthened by retrospective epidemiological studies that have found a decrease in cancer risk in diabetic patients treated with metformin. In this review, we have focused our discussion on recent molecular mechanisms of metformin that have been described in various solid tumors in general and in melanoma in particular.  相似文献   

16.
17.
18.
Human melanoma is hardly ever curable at an advanced stage, but overwhelming evidence from untreated or vaccinated patients indicates that this tumor is highly antigenic and frequently immunogenic. Here, we review recent results indicating that CD8+ T cell–mediated antitumor immunity is activated at the systemic and tumor level in the early clinical stages (AJCC stages I and II) and continues to be promoted, in a fraction of patients, even in metastatic disease (stages III and IV). This evidence was obtained by looking at frequency, differentiation phenotype, and function of antitumor T cells in periphery and tumor site of melanoma patients. On the other hand, the paradox of immunity in spite of poor clinical evolution of the disease, points toward a model of concurrent evolution of immunity and tumor escape. As melanoma progresses to metastatic disease, powerful mechanisms of tumor evasion from immune recognition, and of immunosuppression, are activated, thus tilting the balance between immunity and escape in favor of tumor resistance to host defense. Nevertheless, recent developments in our understanding of regulation of T cell–mediated immunity can provide clues to the prospects for improved immunotherapy approaches. By integrating the information from basic research in immunology, from murine tumor models, and from trials of immunotherapy, we discuss how the most relevant steps of the antitumor response should be manipulated with greater efficacy by future clinical trials. This article forms part of the Symposium in Writing Tumor escape from the immune response, published in Vol. 53.  相似文献   

19.
Malignant melanoma is one of the most aggressive cancers and can disseminate from a relatively small primary tumor and metastasize to multiple sites, including the lung, liver, brain, bone, and lymph nodes. Elucidating the molecular and genetic changes that take place during the metastatic process has led to a better understanding of why melanoma is so metastatic. Herein, we describe the unique features that distinguish melanoma from other solid tumors and contribute to the malignant phenotype of melanoma cells. For example, although melanoma cells are highly antigenic, they are extremely efficient at evading host immune response. Melanoma cells share numerous cell surface molecules with vascular cells, are highly angiogenic, are mesenchymal in nature, and possess a higher degree of ‘stemness’ than do other solid tumors. Finally, analysis of melanoma mutations has revealed that the gene expression profile of malignant melanoma is different from that of other cancers. Elucidating these molecular and genetic processes in highly metastatic melanoma can lead to the development of improved treatment and individualized therapy options.  相似文献   

20.
Dramatic changes in glycan biosynthesis during oncogenic transformation result in the emergence of marker glycans on the cell surface. We analysed the N-linked glycans of L1CAM from different stages of melanoma progression, using high-performance liquid chromatography combined with exoglycosidase sequencing, matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry, and lectin probes. L1CAM oligosaccharides are heavily sialylated, mainly digalactosylated, biantennary complex-type structures with galactose β1-4/3-linked to GlcNAc and with or without fucose α1-3/6-linked to GlcNAc. Hybrid, bisected hybrid, bisected triantennary and tetraantennary complex oligosaccharides, and β1-6-branched complex-type glycans with or without lactosamine extensions are expresses at lower abundance. We found that metastatic L1CAM possesses only α2-6-linked sialic acid and the loss of α2-3-linked sialic acid in L1CAM is a phenomenon observed during the transition of melanoma cells from VGP to a metastatic stage. Unexpectedly, we found a novel monoantennary complex-type oligosaccharide with a Galβ1-4Galβ1- epitope capped with sialic acid residues A1[3]G(4)2S2-3. To our knowledge this is the first report documenting the presence of this oligosaccharide in human cancer. The novel and unique N-glycan should be recognised as a new class of human melanoma marker. In functional tests we demonstrated that the presence of cell surface α2-3-linked sialic acid facilitates the migratory behaviour and increases the invasiveness of primary melanoma cells, and it enhances the motility of metastatic cells. The presence of cell surface α2-6-linked sialic acid enhances the invasive potential of both primary and metastatic melanoma cells. Complex-type oligosaccharides in L1CAM enhance the invasiveness of metastatic melanoma cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号