首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two neuropeptide precursor cDNAs (LUQ-1 and L5-67) have been recently isolated from the Left Upper Quadrant (LUQ) neurons of the abdominal ganglion of Aplysia californica (Shyamala, Fisher, and Scheller, 1986; Wickham and DesGroseillers, 1991). Using in situ hybridization techniques as well as dot blot and polymerase chain reaction (PCR) assays, we have studied the expression of these genes in the central nervous system (CNS) of Aplysia californica. The LUQ-1 gene was found to be expressed in neuron L5 in the abdominal ganglion, whereas the expression of the L5-67 gene was observed in the other four LUQ cells (L2-4 and L6). When in situ hybridization was performed on paraffin sections of the abdominal ganglion, clusters of smaller cells located in the left hemiganglion, were also found to express either the LUQ-1 or the L5-67 gene, never both. In many sections, the mRNAs coding for the two neuropeptides were found not only in cell bodies but also in the axon of individual LUQ neurons and even as far as the pericardial nerve. The presence of neuropeptide mRNA in axons, pericardial nerve, and kidney has been confirmed by polymerase chain reaction. A specific, although diffuse hybridization in the left upper quadrant also suggests that mRNA is present in the neuritic field. Taken together these results indicate that neuron L5 is the only giant neuron expressing the LUQ-1 gene and might therefore have a physiological function different from the other four LUQ cells. Neuropeptide mRNAs were also found in the axon and/or the neuritic field of giant neurons and could play important roles related to cell signalling in axons and nerve termini.  相似文献   

2.
Two neuropeptide precursor cDNAs (LUQ-1 and L5-67) have been recently isolated from the Left Upper Quadrant (LUQ) neurons of the abdominal ganglion of Aplysia californica (Shyamala, Fisher, and Scheller, 1986; Wickham and DesGroseillers, 1991). Using in situ hybridization techniques as well as dot blot and polymerase chain reaction (PCR) assays, we have studied the expression of these genes in the central nervous system (CNS) of Aplysia californica. The LUQ-1 gene was found to be expressed in neuron L5 in the abdominal ganglion, whereas the expression of the L5-67 gene was observed in the other four LUQ cells (L2-4 and L6). When in situ hybridization was performed on paraffin sections of the abdominal ganglion, clusters of smaller cells located in the left hemiganglion, were also found to express either the LUQ-1 on the L5-67 gene, never both. In many sections, the mRNAs coding for the two neuropeptides were found not only in cell bodies but also in the axon of individual LUQ neurons and even as far as the pericardial nerve. The presence of neuropeptide mRNA in axons, pericardial nerve, and kidney has been confirmed by polymerase chain reaction. A specific, although diffuse hybridization in the left upper quadrant also suggests that mRNA is present in the neuritic field. Taken together these results indicate that neuron L5 is the only giant neuron expressing the LUQ-1 gene and might therefore have a physiological function different from the other four LUQ cells. Neuropeptide mRNAs were also found in the axon and/or the neuritic field of giant neurons and could play important roles related to cell signalling in axons and nerve termini.  相似文献   

3.
The L2-4,6 and L5 cells located in the left upper quadrant of the abdominal ganglion of Aplysia californica express the L5-67 and LUQ-1 genes, respectively, in a nonoverlapping manner. These cells send major neurites to the kidney and at least some of them were shown to innervate the renal pore closer muscle, and thereby control its function. By using in-situ hybridization and immunofluorescence, the presence of L5-67 and LUQ-1 mRNAs and peptides was studied in the kidney, with emphasis on the region of the renal pore. We detected immunoreactive materials in many small varicose nerve fibers running along the central epithelium in the inner parts of the kidney, and in neurites located within a large nerve associated with muscles inside the renal pore. Our observations represent the first direct evidence of the presence of gene products from LUQ cells at the renal pore, suggesting that they may be responsible for mediating LUQ cell signals. Furthermore, mRNAs coding for the L5-67 and LUQ-1 peptides were also found in the nerve structure inside the renal pore. Our report documents a striking example of neuropeptide mRNA targeting nerve terminals that are very distant from their cell bodies.  相似文献   

4.
We have examined the effects of peptides on the neuroendocrine bag cells, the R2 neuron and the left upper quadrant (LUQ) neurons of the abdominal ganglion of Aplysia californica. Peptides include those extracted from the atrial gland, a reproductive organ; those released by an afterdischarge of the bag cells; and 2 synthetic peptides: the amidated 9-amino acid C-terminal portion of atrial gland peptides A/B/ERH (B26-34), and the 8-amino acid alpha-bag cell peptide (alpha-BCP1-8). Peptides were applied by superfusion, arterial perfusion, pressure ejection from micropipettes, or by inducing a bag cell afterdischarge. Both alpha-BCP1-8 and B26-34 are able to produce a bag cell afterdischarge when applied to the abdominal ganglion but are not as effectively able to trigger the bag cells when applied selectively to the ganglia of the head ring. Peptides released by the bag cells inhibit R2 and LUQ neurons; whereas atrial gland extract mildly excites LUQ neurons and powerfully excites R2. The inhibitory effect of the LUQ cells and R2 following an afterdischarge of the bag cells is mimicked by alpha-BCP1-8. The excitatory effect of the atrial gland extract cannot be duplicated with B26-34. Rather, instead of having an excitatory effect on R2 and LUQ cells, B26-34 seems to mimick alpha-BCP1-8 and inhibit these neurons. Both peptides produce a membrane conductance increase in R2 and LUQ cells.  相似文献   

5.
6.
We have examined the effects of peptides on the neuroendocrine bag cells, the R2 neuron and the left upper quadrant (LUQ) neurons of the abdominal ganglion of Aplysia californica. Peptides include those extracted from the atrial gland, a reproductive organ; those released by an afterdischarge of the bag cells; and 2 synthetic peptides: the amidated 9-amino acid C-terminal portion of atrial gland peptides A/B/ERH (B26–34), and the 8-amino acid alpha-bag cell peptide (α-BCP1–8). Peptides were applied by superfusion, arterial perfusion, pressure ejection from micropipettes, or by inducing a bag cell afterdischarge. Both α-BCP1–8 and B26–34 are able to produce a bag cell afterdischarge when applied to the abdominal ganglion but are not as effectively able to trigger the bag cells when applied selectively to the ganglia of the head ring. Peptides released by the bag cells inhibit R2 and LUQ neurons; whereas atrial gland extract mildly excites LUQ neurons and powerfully excites R2. The inhibitory effect of the LUQ cells and R2 following an afterdischarge of the bag cells in mimicked by α-BCP1–8. The excitatory effect of the atrial gland extract cannot be duplicated with B26–34. Rather, instead of having an excitatory effect on R2 and LUQ cells, B26–34 seems to mimick α-BCP1–8 and inhibit these neurons. Both peptides produce a membrane conductance increase in R2 and LUQ cells.  相似文献   

7.
Alpha-bag cell peptide [alpha-BCP (Ala-Pro-Arg-Leu-Arg-Phe-Tyr-Ser-Leu)] is a neurotransmitter that mediates bag cell-induced inhibition of left-upper-quadrant (LUQ) neurons L2, L3, L4, and L6 in the abdominal ganglion of Aplysia. Our recent biochemical studies have shown that alpha-BCP[1-9] is cleaved into alpha-BCP[1-2], [3-9], [1-5], [6-9], and [7-9] by a combination of three distinct peptidase activities located within the extracellular spaces of the CNS: A diaminopeptidase-IV (DAP-IV)-like enzyme cleaves alpha-BCP[1-9] at the 2-3 peptide bond; a neutral metalloendopeptidase (NEP)-like enzyme cleaves either alpha-BCP[1-9] or alpha-BCP[3-9] at the 5-6 bond; an aminopeptidase M-II (APM-II)-like enzyme cleaves alpha-BCP[6-9] at the 6-7 bond, but cleaves neither alpha-BCP[1-9], nor the other ganglionic peptidase products. To further understand the manner in which alpha-BCP is inactivated after release, that is loses its electrophysiological activity, we studied its structure-activity relationship by recording intracellularly from LUQ neurons in isolated abdominal ganglia that were arterially perfused with peptides dissolved in artificial sea water. The effects of alpha-BCP[1-9] and 15 of its fragments ([1-8], [1-7], [1-6], [1-5], [2-9], [3-9], [3-8], [6-9], [7-9], [8-9], [6-7], [6-8], [1-2], Phe, Tyr) indicated that the sequence Phe6-Tyr7 was both necessary and sufficient to produce LUQ inhibitory activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Egg laying in the marine molluscan genus Aplysia is elicited by an egg-laying hormone (ELH) which induces ovulation and acts on central neurons to effect egg-laying behavior. ELH, isolated from the A. californica bag cells, and three ELH-related peptides, isolated from the A. californica atrial gland, have been chemically characterized, yet relatively little is known about homologous peptides in other Aplysia species. In these studies, the primary structure of A. brasiliana ELH was determined. Bag cell clusters were extracted in an acidic solution, and the peptides purified by sequential gel filtration and reversed-phase HPLC; ELH was identified by bioassay. Amino acid compositional and sequence analyses demonstrated that the neurohormone was a 36-residue peptide whose sequence was identical to that of A. californica ELH: NH2-Ile-Ser-Ile-Asn-Gln-Asp-Leu-Lys-Ala-Ile-Thr-Asp-Met-Leu-Leu-Thr-Glu- Gln-Ile- Arg-Glu-Arg-Gln-Arg-Tyr-Leu-Ala-Asp-Leu-Arg-Gln-Arg-Leu-Leu-Glu-Lys-COOH .  相似文献   

9.
The bag cells of the marine mollusc Aplysia are model neuroendocrine cells involved in the initiation of egg laying and its associated behaviors, but the natural stimulus triggering bag-cell activity is not known. The atrial gland of A. californica, an exocrine organ in the reproductive tract, contains two structurally related peptides (A and B) which can induce an afterdischarge in vitro, and these peptides can be used to probe the central nervous system for sites where extrinsic excitatory input onto the bag-cell system might occur. These sites were identified in a series of lesion and ablation experiments. The entire central nervous system was removed from an animal and placed in a chamber with two compartments which could be independently perfused, allowing peptides (atrial gland extract or purified peptide B) to be selectively applied to specific regions of the nervous system while bag-cell activity was monitored using extracellular suction electrodes. Afterdischarges were consistently and reliably induced when peptides were applied to the cerebral ganglion, the pleural ganglia, the cerebropleural connectives, or the rostral 10-15% of the pleurovisceral connectives, provided that an intact neuronal pathway connected the site of peptide application with the bag cells. In contrast, afterdischarges were never observed when peptides were selectively applied to the buccal or pedal ganglia and only rarely observed when applied to the abdominal ganglion and caudal pleurovisceral connectives. These results support the hypothesis that bag-cell processes and/or neuron(s) presynaptically excitatory to the bag cells are located in the pleural and cerebral ganglia and narrow the region of the central nervous system where the critical initiator element(s) can be identified.  相似文献   

10.
We have used identified neurons from the abdominal ganglion of the mollusc Aplysia to construct and analyze two circuits in vitro. Each of these circuits was capable of producing two patterns of persistent activity; that is, they had bistable output states. The output could be switched between the stable states by a brief, external input. One circuit consisted of cocultured L10 and left upper quadrant (LUQ) neurons that formed reciprocal, inhibitory connections. In one stable state L10 was active and the LUQ was quiescent, whereas in the other stable state L10 was quiescent and the LUQ was active. A second circuit consisted of co-cultured L7 and L12 neurons that formed reciprocal, excitatory connections. In this circuit, both cells were quiescent in one stable state and both cells fired continuously in the other state. Bistable output in both circuits resulted from the nonlinear firing characteristics of each neuron and the feedback between the two neurons. We explored how the stability of the neuronal output could be controlled by the background currents injected into each neuron. We observed a relatively well-defined range of currents for which bistability occurred, consistent with the values expected from the measured strengths of the connections and a simple model. Outside of the range, the output was stable in only a single state. These results suggest how stable patterns of output are produced by some in vivo circuits and how command neurons from higher neural centers may control the activity of these circuits. The criteria that guided us in forming our circuits in culture were derived from theoretical studies on the properties of certain neuronal network models (e.g., Hopfield, J. J. 1984. Proc. Natl. Acad. Sci. USA. 81:3088-3092). Our results show that circuits consisting of only two co-cultured neurons can exhibit bistable output states of the form hypothesized to occur in populations of neurons.  相似文献   

11.
A single gene encodes multiple neuropeptides mediating a stereotyped behavior   总被引:20,自引:0,他引:20  
Egg laying in Aplysia is characterized by a stereotyped behavioral array which is mediated by several neuroactive peptides. We have sequenced two genes encoding the A and B peptides thought to initiate the egg-laying process, as well as a gene encoding egg-laying hormone (ELH) which directly mediates the behavioral array. The three genes share 90% sequence homology and are representatives of a small multigene family. Each gene encodes a protein precursor in which the active peptides are flanked by internal cleavage sites providing the potential to generate multiple small peptides. Each of the three genes consists of sequences homologous to A or B peptide as well as ELH. Although these genes share significant nucleotide homology, they have diverged such that different member genes express functionally related but nonoverlapping sets of neuroactive peptides in different tissues.  相似文献   

12.
Mechanisms that regulate neurite outgrowth are phylogenetically conserved, including the signaling molecules involved. Here, we describe neurotrophic effects on isolated bag cell neurons (BCNs) of substrate-bound growth factors endogenous to the sea slug Aplysia californica. Sheath cells dissociated from the pleural-visceral connectives of the Aplysia CNS and arterial cells dissociated from the anterior aorta enhance neurite outgrowth when compared to controls, i.e., BCNs grown in defined medium alone. In addition, the substrate remaining after sheath cells or arterial cells are killed significantly enhances growth, relative to all other conditions tested. For instance, primary neurites are more numerous and greater in length for BCNs cultured on substrate produced by arterial cells. These results suggest that sheath and arterial cells produce growth-promoting factors, some of which are found in the substrates produced by these cell types. Using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), we found that Aplysia collagen-like peptides are produced by dissociated arterial cells, and therefore likely contribute to the observed growth effects. Collagen-like peptides and other factors produced by sheath and arterial cells likely influence neurite growth in the Aplysia CNS during development, learning and memory, and regeneration after injury.  相似文献   

13.
We have generated a monoclonal antibody (mAb) 5E10 which recognizes an antigen localized to dense core vesicles (DCVs) in the atrial gland of Aplysia californica. mAb5E10 immunoprecipitates an abundant 57-kDa glycoprotein (atrial gland granule-specific antigen, AGSA) which is a soluble component of atrial gland DCVs. Electron microscopy reveals that AGSA immunoreactivity is restricted to the region between the dense core, which contains neuropeptide immunoreactivity, and the membrane of atrial gland DCVs. AGSA was purified by immunoaffinity chromatography, and the amino acid sequences of both N-terminal and internal cyanogen bromide fragments were determined. This information was used to isolate a 2.8-kilobase cDNA which encodes a 47-kDa protein. The predicted amino acid sequence contains the micro-sequenced peptides, an N-terminal hydrophobic signal sequence, and four N-linked glycosylation sites, but does not contain any significant homologies to database sequences. Northern blots and light level immunocytochemistry demonstrate that the AGSA gene is specifically expressed in the atrial gland. The identification of a protein localized to the cortex of DCVs suggests that this region has a specialized role in the function of these vesicles.  相似文献   

14.
The atrial gland of the marine mollusk Aplysia californica contains several biologically active peptides that are thought to be important in reproductive function. In the present study, three novel peptides, which we named califin A, B, and C, were purified from extracts of atrial glands by high performance liquid chromatography, and their primary structures were determined. Each consists of a 36-residue subunit bound by a single disulfide bond to an 18-residue subunit. The large subunits differ from each other by one or two residues, whereas the small subunits are identical. The large subunits are 78-83% homologous to egg-laying hormone (ELH), a 36-residue peptide synthesized by the neuroendocrine bag cells of Aplysia. Like ELH, the califins excite LB and LC cells of the abdominal ganglion and cause egg laying when injected into sexually mature animals. Based on previously described DNA sequence data, each califin is likely to be derived from one of several precursor proteins that are encoded by members of the ELH gene family. Califin A is encoded on the peptide A precursor, and califin B may be encoded on the peptide B precursor. No gene encoding califin C has been sequenced. Because peptides A and B are also biologically active, the precursors encoding them and califins A and B are polyproteins. The possible role of atrial gland peptides as pheromones is discussed.  相似文献   

15.
Although diverse peptides are known to affect invertebrate cardiac activity, the peptidergic regulation of the cardiovascular system of Aplysia is still poorly understood. Asn-D-Trp-Phe-NH(2) (NdWFamide) is a recently purified cardioactive peptide in Aplysia. Pharmacological experiments showed that NdWFamide was one of the most potent cardioexcitatory peptides among the known endogenous cardioactive peptides in Aplysia. NdWFamide-immunopositive neuronal processes were abundant in the cardiovascular region of Aplysia, and many of them originated from neurosecretory cells in the abdominal ganglion (R3-R13 cells). The data suggest that NdWFamide is a cardioexcitatory peptide utilized by R3-R13 cells of Aplysia.  相似文献   

16.
The neuroendocrine bag cell neurons of the marine mollusk Aplysia produce prolonged inhibition that lasts for more than 2 hr. We purified a peptide from the abdominal ganglion that mimics this inhibition. Mass spectrometry and microsequence analysis indicate that the peptide is 40 aa long and is amidated at its carboxyl terminus. It is highly homologous to vertebrate neuropeptide Y (NPY) and other members of the pancreatic polypeptide family. As determined from cloned cDNA, the gene coding for the precursor protein shares a common structural organization with genes encoding precursors of the vertebrate family. The peptides may therefore have arisen from a common ancestral gene. Bag cell neurons are immunoreactive for Aplysia NPY, and Northern blot analysis indicates that as with its vertebrate counterparts, the peptide is abundantly expressed in the CNS. This suggests that peptides related to NPY may have important functions in the nervous system of Aplysia as well as in other invertebrates.  相似文献   

17.
18.
We have sequenced a cDNA, isolated from a chick embryo fibroblast lambda gt11 library, that encodes all 887 amino acids of alpha-actinin. Sequence from 10 different peptides from chick smooth muscle alpha-actinin was found to match that derived from the cDNA. The deduced protein sequence can be divided into three distinct domains: (a) the N-terminal 240 amino acid contains a highly conserved region (compared with Dictyostelium alpha-actinin) which probably represents the actin-binding domain, (b) amino acids 270-740 contain four repeats of a spectrin-like sequence, and (c) the C-terminal sequence contains two EF-hand Ca2+-binding sites. Each of these sites is defective in at least one oxygen-containing Ca2+-chelating amino acid side chain, suggesting that they are nonfunctional. Southern blots suggest that the alpha-actinin cDNA described here hybridizes to only one gene in chicken. Northern blots reveal only one size class of mRNA in fibroblasts and smooth muscle, but no hybridizing species could be detected in skeletal muscle poly(A+) RNA. The results are consistent with the view that smooth and skeletal muscle alpha-actinins are encoded by separate genes, which are considerably divergent.  相似文献   

19.
20.
The right upper quadrant (RUQ) cells (R3-R13) of Aplysia regenerating in dissociated cell culture form unusually large growth cones. The movement of these growth cones was observed by time-lapse phase microscopy and their ultrastructure was examined by transmission electron microscopy. Their behavior and ultrastructure have features that are typical of growth cones in vitro. Additionally, they contain neurosecretory granules similar to those found in these cells in vivo. Because RUQ growth cones are large, they can be isolated by manual dissection. RUQ cells were grown in the presence of [35S]methionine and the labeled proteins transported to the growth cones were analyzed by SDS-PAGE. These proteins were compared to those in RUQ cell bodies, RUQ neurites, and to those in the neurites and cell bodies of other identified neurons grown in vitro. Most proteins synthesized by RUQ cells in vitro are transported to their growth cones, including several glycoproteins and the precursor to the R3-R14 neuropeptide. Neuropeptides are also synthesized by a number of other Aplysia neurons growing in vitro. We examined R2, LPL1, R15, and left upper quadrant neurons and found that their precursor peptides, like those of R3-R14, are readily recognized as major cell-specific radiolabeled bands on SDS gels. The presence in regenerating growth cones of neuropeptides, neurosecretory granules, and glycoproteins known to be rapidly transported toward synapses in vivo supports the emerging view that the growth cone in vitro contains not only a motility apparatus but also a macromolecular assembly capable of forming an active synapse immediately upon or shortly after contacting targets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号