首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A very high capacity immunoaffinity matrix for the purification of progesterone receptor was prepared by cross-linking a monoclonal antireceptor antibody to protein A-Sepharose through the Fc fragment. The monoclonal antibody was selected for its property of losing affinity for the receptor at pH 10.5, i.e., in conditions where the receptor remains stable for extensive periods of time. This made it possible to elute active receptor form the immunosorbent. From crude rabbit uterine cytosol the steroid-receptor complexes were purified in a single step. A 1-mL column (containing 7 mg of monoclonal antibody) bound 1600 pmol of steroid-receptor complexes of which 79.5% were eluted. The overall yield of purification was 49%. The specific activity of the purified steroid-receptor complexes was 6.71 +/- 0.79 nmol of bound steroid/mg of protein (mean +/- SE of four experiments). The purified receptor consisted of a mixture of 110 000- and 79 000-dalton forms. The latter appeared to be produced by proteolysis of the larger form during purification since immunoblot experiments showed that, at the start of purification, the 110 000-dalton form was present in overwhelming majority (80-95%) in the uterine cytosol and that the 79 000-dalton form only appeared during purification. This conclusion was also supported by the peptide analysis of both forms of receptor: the purified receptor was denatured and labeled with 125I; the 110 000- and 79 000-dalton forms were isolated by gel electrophoresis in denaturing conditions and electroelution and were then submitted to mild or extensive digestions by trypsin, chymotrypsin, and protease V8 from Staphylococcus aureus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
We have developed a strategy for immobilization-stabilization of alpha-chymotrypsin by multipoint covalent attachment of the enzyme, through its amino groups, to agarosealdehyde gels. We have studied the role of the main variables that control the intensity of these enzyme-support multi-interaction processes (surface density of aldehyde groups in the activated gel, contact time between the immobilized enzyme and the activated support prior to borohydride reduction of the derivatives, etc.). In this way, we have prepared a number of very different chymotrypsinagarose derivatives. Our best derivatives, with the most intense multipoint attachment, were more stable than one-point attached derivatives and were more than 60,000-fold more stable than soluble enzyme in the absence of autolysis phenomena. In spite of the dramatic stabilization, the catalytic activity of these derivatives is little changed (they only lose 35% of intrinsic activity after this intense enzyme-support multi-interaction process). In addition, we have also demonstrated the very high capacity of 6% aldehyde-agarose gels to immobilize pure chymotrypsin (40 mg enzyme/mL catalyst). Furthermore, we have been able to establish a clear correlation between enzyme-support multipoint covalent attachment, stabilization against very different denaturing agents (heat, urea, organic cosolvents), and insensitivity of those immobilized chymotrypsin molecules to some activating agents.  相似文献   

3.
This study is concerned with the development and application of kinetic locking-on and auxiliary tactics for bioaffinity purification of NADP(+)-dependent dehydrogenases, specifically (1) the synthesis and characterization of highly substituted N(6)-linked immobilized NADP(+) derivatives using a rapid solid-phase modular approach; (2) the evaluation of the N(6)-linked immobilized NADP(+) derivatives for use with the kinetic locking-on strategy for bioaffinity purification of NADP(+)-dependent dehydrogenases: Model bioaffinity chromatographic studies with glutamate dehydrogenase from bovine liver (GDH with dual cofactor specificity, EC 1.4.1.3) and glutamate dehydrogenase from Candida utilis (GDH which is NADP(+)-specific, EC 1.4.1.4); (3) the selection of an effective "stripping ligand" for NADP(+)-dehydrogenase bioaffinity purifications using N(6)-linked immobilized NADP(+) derivatives in the locking-on mode; and (4) the application of the developed bioaffinity chromatographic system to the purification of C. utilis GDH from a crude cellular extract.Results confirm that the newly developed N(6)-linked immobilized NADP(+) derivatives are suitable for the one-step bioaffinity purification of NADP(+)-dependent GDH provided that they are used in the locking-on mode, steps are taken to inhibit alkaline phosphatase activity in crude cellular extracts, and 2',5'-ADP is used as the stripping ligand during chromatography. The general principles described here are supported by a specific sample enzyme purification; the purification of C. utilis GDH to electrophoretic homogeneity in a single bioaffinity chromatographic step (specific activity, 9.12 micromol/min/mg; purification factor, 83.7; yield 88%). The potential for development of analogous bioaffinity systems for other NADP(+)-dependent dehydrogenases is also discussed.  相似文献   

4.
Soluble hexokinase (ATP: D-hexose 6-phosphotransferase, EC 2.7.1.1) was purified from human heart. 1 kg of tissue provided 25 mg hexokinase with a specific activity of 58 units/mg, representing a 1700-fold purification and 47% yield. The purification involved six steps, including affinity chromatography with glucosamine attached to Sepharose. The material was homogeneous according to electrophoresis, gel-filtration and sedimentation in the ultracentrifuge, but gave two main components on electrophoresis in denaturing conditions. From determination of the sedimentation and diffusion coefficients, the relative molecular mass was calculated to be 105 000. The enzyme is monomeric, but glucose 6-phosphate promotes an association to dimers. This effect is reversible and is independent of the concentrations of glucose or inorganic phosphate. The results support the postulate that soluble and mitochondrion-bound hexokinases are identical.  相似文献   

5.
L G Lange  B L Vallee 《Biochemistry》1976,15(21):4681-4686
A general affinity chromatographic method for alcohol dehydrogenase purification has been developed by employing immobilized 4-substituted pyrazole derivatives that isolate the enzyme through formation of a specific ternary complex. Sepharose 4B is activated with 300 mg of cyanogen bromide/ml of packed gel and coupled to 4-[3-(N-6-aminocaproyl)aminopropyl]pyrazole. From crude liver extracts in 50 mM phosphate-0.37 mM nicotinamide adenine dinucleotide, pH 7.5, alcohol dehydrogenase is optimally bound at a capacity of 4-5 mg of enzyme/ml of gel. Addition of ethanol, propanol, or butanol, 500 mM, results in the formation of a second ternary complex, which allows the elution of bound enzyme in high yield and purity. This double-ternary complex affinity chromatography has been applied successfully to human, horse, rat, and rabbit liver extracts to isolate the respective homogeneous alcohol dehydrogenases.  相似文献   

6.
Epoxy supports (Eupergit C) may be very suitable to achieve the multipoint covalent attachment of proteins and enzymes, therefore, to stabilize their three-dimensional structure. To achieve a significant multipoint covalent attachment, the control of the experimental conditions was found to be critical. A three-step immobilization/stabilization procedure is here proposed: 1) the enzyme is firstly covalently immobilized under very mild experimental conditions (e.g. pH 7.0 and 20 degrees C); 2) the already immobilized enzyme is further incubated under more drastic conditions (higher pH values, longer incubation periods, etc.) to "facilitate" the formation of new covalent linkages between the immobilized enzyme molecule and the support; 3) the remaining groups of the support are blocked to stop any additional interaction between the enzyme and the support. Progressive establishment of new enzyme-support attachments was showed by the progressive irreversible covalent immobilization of several subunits of multi-subunits proteins (all non-covalent structures contained in crude extracts of different microorganism, penicillin G acylase and chymotrypsin). This multipoint covalent attachment enabled the significant thermostabilization of two relevant enzymes, (compared with the just immobilized derivatives): chymotrypsin (5-fold factor) and penicillin G acylase (18-fold factor). Bearing in mind that this stabilization was additive to that achieved by conventional immobilization, the final stabilization factor become 100-fold comparing soluble penicillin G acylase and optimal derivative. These stabilizations were observed also when the inactivations were promoted by the enzyme exposure to drastic pH values or the presence of cosolvents.  相似文献   

7.
The analytical and biotechnological applications of human hemoglobin immobilized covalently on CNBr–Sepharose 4B are reviewed. Hemoglobin is bound to the matrix as αβ dimers via either chain. The immobilized αβ dimers maintain the capacity to interact reversibly with soluble ones under conditions where the soluble protein is in self-association equilibrium. Under these conditions, therefore, immobilized dimers bind part of the soluble protein. In turn, the binding process can be used to assess the specific features of the equilibrium on solid-phase and to extract selectively hemoglobin from a variety of biological specimens of practical interest. A different application of immobilized αβ dimers concerns their use in the determination of the equilibrium and kinetic stability of the heme–globin linkage, a property that is directly correlated with the stability of the hemoglobin molecule. The advantages and limitations attendant the use of the immobilized protein relative to the soluble one are discussed.  相似文献   

8.
Procedures to purify membrane proteins usually require the use of detergents and often include affinity chromatography on lectin columns. Some detergents, especially denaturing detergents such as sodium dodecyl sulfate (SDS), can interfere with affinity chromatography by inactivating the bound lectin or by eluting it from the column together with the material of interest. We have developed a procedure that stabilizes lectin-column matrices by crosslinking with glutaraldehyde. This procedure does not impair the binding capacity of the immobilized lectin. It permits subsequent elution by SDS of bound glycoproteins without coelution of lectin subunits.  相似文献   

9.
The native dimeric form of enolase from pig muscle was immobilized on Sepharose 4B activated with cyanogen bromide. The amount of matrix-bound enolase, its specific activity and kinetic properties depend on the extent of gel activation with CNBr. Only on the Sepharose activated with small quantities of CNBr the amount of protein which remained after treatment with Gdn.HCl was about 50% of the initially bound enolase, indicating that the enzyme was bound covalently to the matrix through a single subunit. The matrix-bound monomers obtained in this way were inactive and were unable to reassociate to dimers on addition of free subunits. The matrix-bound monomers obtained after KBr treatment were inactive but retained the ability to reassociate into active dimers after addition of free subunits. The results indicate that single matrix-bound subunits of pig muscle enolase are enzymatically inactive and dimeric structure is essential for catalytic activity.  相似文献   

10.
Differences in the glycosylation of acetylcholinesterase (AChE) subunits which form the dimers of mouse erythrocyte and a suitable procedure to purify the enzyme by affinity chromatography in edrophonium-Sepharose are described. AChE was extracted ( approximately 80%) from erythrocytes with Triton X-100 and sedimentation analyses showed the existence of amphiphilic AChE dimers in the extract. The AChE dimers were converted into monomers by reducing the disulfide bond which links the enzyme subunits. Lectin interaction studies revealed that most of the dimers were bound by concanavalin A (Con A) (90-95%), Lens culinaris agglutinin (LCA) (90-95%), and wheat germ (Triticum vulgaris) agglutinin (WGA) (70-75%), and a small fraction by Ricinus communis agglutinin (RCA(120)) (25-30%). The lower level of binding of the AChE monomers with WGA (55-60%), and especially with RCA (10-15%), with respect to the dimers, reflected heterogeneity in the sugar composition of the glycans linked to each AChE subunit in dimers. Forty per cent of the amphiphilic AChE dimers lost the glycosylphosphatidylinositol (GPI) and, therefore, were converted into hydrophilic forms, by incubation with phosphatidylinositol-specific phospholipase C (PIPLC), which permitted their separation from the amphiphilic variants in octyl-Sepharose. Only the hydrophilic dimers, either isolated or mixed with the amphiphilic forms, were bound by edrophonium-Sepharose, which allowed their purification (4800-fold) with a specific activity of 7700 U/mg protein. The identification of a single protein band of 66 kDa in gel electrophoresis demonstrates that the procedure can be used for the purification of GPI-anchored AChE, providing that the attached glycolipid domain is susceptible to PIPLC.  相似文献   

11.
Purine nucleoside phosphorylase (EC 2.4.2.1; purine nucleoside:orthophosphate ribosyltransferase) from fresh human erythrocytes has been purified to homogeneity in two steps with an overall yield of 56%. The purification involves DEAE-Sephadex chromatography followed by affinity chromatography on a column of Sepharose/formycin B. This scheme is suitable for purification of the phosphorylase from as little as 0.1 ml of packed erythrocytes. The native enzyme appears to be a trimer with native molecular weight of 93,800 and the subunit molecular weight of 29,700 +/- 1,100. Two-dimensional gel electrophoresis of the purified enzyme under denaturing conditions revealed four major separable subunits (numbered 1 to 4) with the same molecular weight. The apparent isoelectric points of subunits 1 to 4 in 9.5 M urea are 6.63, 6.41, 6.29, and 6.20, respectively. The different subunits are likely the result of post-translational modification of the enzyme and provide an explanation of the complex native isoelectric focusing pattern of purine nucleoside phosphorylase from erythrocytes. Three of the four subunits are detectable in two-dimensional electrophoretic gels of crude hemolysates. Knowing the location of the subunits of purine nucleoside phosphorylase in a two-dimensional electropherogram allows one to characterize the purine nucleoside phosphorylase in crude cell extracts from individuals with variant or mutant purine nucleoside phosphorylase as demonstrated in a subsequent communication. Partial purification of the phosphorylase from 1 ml of erythrocytes on DEAE-Sephadex increases the sensitivity of detection of the subunits to the 0.3% level.  相似文献   

12.
Abstract

The rapid and effective purification of soluble fumarate reductase from baker's yeast achieved by Blue Sepharose CL–6B chromatography. Cibacron Blue F3GA, the chromophore of Blue Sepharose, inhibited the activity of fumarate reductase. The enzyme bound to the column was selectively eluted by flavin adenine dinucleotide (FAD), flavin mononucleotide (FMN) or riboflavin. The purified enzyme was essentially homogeneous as indicated by polyacrylamide gel electrophoresis under non-denaturing conditions and under denaturing conditions in sodium dodecylsulfate. By this procedure, the enzyme could be rapidly purified with high yield from yeast cells.  相似文献   

13.
The inhibition of Helix pomatia arylsulfatase by the synergistic combination of N-acetyl-l-tyrosine ethyl ester and vanadate has been extended to affinity chromatography for purification. In the presence of vanadate, l-tyrosine ethyl ester (TEE), immobilized on CH-Sepharose 4B retained arylsulfatase from the digestive juice or lyophilized powder of H. pomatia. No enzyme was retained without vanadate or with arsenate or phosphate. Arylsulfatase was eluted from the column matrix by removing the vanadate to less than 50 microM with buffer containing EDTA to chelate the vanadate. Escherichia coli alkaline phosphatase and potato acid phosphatase, two enzymes which are inhibited by vanadate but not by the vanadate-TEE complex, were not retained by the immobilized TEE under any conditions used. The sulfatase activity was completely separated from contaminating glucuronidase activity present in the crude enzyme extracts. The Ki for the immobilized vanadate-TEE system was found to be 5.0 x 10(-7) M with a capacity of 25 mg/ml swollen gel. A purification of greater than 40-fold from the lyophilized powder of H. pomatia (Sigma Type H-5) was achieved using this technique. The Ki/Keq of other phenols with vanadate were determined in a 96-well plate format as an example of a rapid screening technique that could be extended to other phosphoryl and sulfuryl-transfer enzyme classes.  相似文献   

14.
Tomato pomace and pectin were used as the sole carbon sources for the production of polygalacturonase from a strain of Coriolus versicolor in submerged culture. The culture of C. versicolor grown on tomato pomace exhibited a peak of polygalacturonase activity (1,427 U/l) on the third day of culture with a specific activity of 14.5 U/mg protein. The production of polygalacturonase by C. versicolor grown on pectin as a sole carbon source increased with the time of cultivation, reaching a maximum activity of 3,207 U/l of fermentation broth with a specific activity of 248 U/mg protein. The levels of different isoenzymes of polygalacturonase produced during the culture growth were analysed by native PAGE. Differential chromatographic behaviour of lignocellulosic enzymes produced by C. versicolor (i.e. polygalacturonase, xylanase and laccase) was studied on immobilized metal chelates. The effect of ligand concentration, pH, the length of spacer arm and the nature of metal ion were studied for enzyme adsorption on immobilized metal affinity chromatography (IMAC). The adsorption of these lignocellulosic enzymes onto immobilized metal chelates was pH-dependent since an increase in protein adsorption was observed as the pH was increased from 6.0 to 8.0. The adsorption of polygalacturonase as well as other enzymes to immobilized metal chelates was due to coordination of histidine residues which are available at the protein surface since the presence of imidazole in the equilibration buffer abolished the adsorption of the enzyme to immobilized metal chelates. A one-step purification of polygalacturonase from C. versicolor was devised by using a column of Sepharose 6B-EPI 30-IDA-Cu(II) and purified enzyme exhibited a specific activity of about 150 U/mg protein, final recovery of enzyme activity of 100% and a purification factor of about 10. The use of short spacer arm and the presence of imidazole in equilibration buffer exhibited a higher selectivity for purification of polygalacturonase on this column with a high purification factor. The purified enzyme preparation was analysed by SDS-PAGE as well as by "in situ" detection of enzyme activity.  相似文献   

15.
Heterotrimeric guanine nucleotide-binding proteins are important mediators in signal transduction and function by transmitting information from membrane-bound receptors to effectors. Because these proteins are membrane bound and contain covalent lipid modifications, detergents are required for solubilization and purification. It was discovered that the interaction between the beta5 subunit and the gamma2 subunit was disrupted in two detergents, cholate and Chaps (3-[(3-cholamidopropyl) dimethylammonio]-1-propansulfonate). A beta5gamma2 column was constructed in which recombinant betagamma dimers were immobilized on a FLAG antibody column via a hexahistidine-FLAG-tagged gamma2 subunit, gamma2HF. Greater than 95% of the beta5 subunit was specifically eluted from the immobilized gamma2HF subunit using a cholate gradient from 0.05 to 1.0% and greater than 40% of the beta5 subunit was eluted using a Chaps gradient from 0.05 to 1.0%. In contrast, the beta1, beta2, and beta3 subunits remained bound to the gamma2HF subunit in all concentrations of Chaps and cholate. Genapol C-100, Triton X-100, and polyoxyethylene-10-lauryl ether did not interfere with any of the four beta subunits' ability to interact with the gamma2 subunit. These data suggest that the beta5 subunit is not stable in bile acid or Chaps-type detergents (i.e., Chapso, glycocholate, deoxycholate). Therefore, alternative detergents should be used to extract dimers containing the beta5 subunit.  相似文献   

16.
Human flotillin-1 (reggie-2), a major hydrophobic protein of biomembrane microdomain lipid rafts, was cloned and expressed in Escherichia coli with four different fusion tags (hexahistidine, glutathione S-transferase, NusA, and thioredoxin) to increase the yield. The best expressed flotillin-1 with thioredoxin tag was solubilized from inclusion bodies, first purified by immobilized metal affinity column under denaturing condition and direct refolded on column by decreasing urea gradient method. The thioredoxin tag was cleaved by thrombin, and the flotillin-1 protein was further purified by anion exchanger and gel filtration column. The purified protein was verified by denaturing gel electrophoresis and Western blot. The typical yield was 3.4 mg with purity above 98% from 1L culture medium. Using pull-down assay, the interaction of both the recombinant flotillin-1 and the native flotillin-1 from human erythrocyte membranes with c-Cbl-associated protein or neuroglobin was confirmed, which demonstrated that the recombinant proteins were functional active. This is the first report describing expression, purification, and characterization of active recombinant raft specific protein in large quantity and highly purity, which would facilitate further research such as X-ray crystallography.  相似文献   

17.
Availability of highly purified native beta-glucosidase Zm-p60.1 in milligram quantities was a basic requirement for analysis of structure-function relationships of the protein. Therefore, Zm-p60.1 was overexpressed to high levels as a fusion protein with a hexahistidine tag, (His)(6)Zm-p60.r, in Escherichia coli, resulting, however, in accumulation of most of the protein in insoluble inclusion bodies. Native (His)(6)Zm-p60.r was then purified either from the bacterial lysate soluble fraction or from inclusion bodies. In the first case, a single-step purification under native conditions based on immobilized metal affinity chromatography (IMAC) was developed. In the second case, a single-step purification protocol under denaturing conditions followed by IMAC-based matrix-assisted refolding was elaborated. The efficiency of the native protein purification from soluble fraction of bacterial homogenate was compared to the feasibility of purification and renaturation of the protein from inclusion bodies. Gain of authentic biological activity and quaternary structure after the refolding process was confirmed by K(m) determination and electrophoretic mobility under native conditions. The yield of properly refolded protein was assessed based on the specific activity of the refolded product.  相似文献   

18.
Rhizobium japonicum hydrogenase was purified to homogeneity from soybean root nodules by four column chromatography steps after solubilization from membranes by treatment with a nonionic detergent. The specific activity was from 40 to 65 mumol H2 oxidized min-1 mg protein-1 and was increased 450-fold relative to that in bacteroids. The yield of activity was from 7 to 12%. The molecular weight of the native enzyme was 104,000 as determined by sucrose density gradient centrifugation. Electrophoresis in the presence of sodium dodecyl sulfate revealed two subunits with molecular weights of 64,000 and 35,000, indicating an alpha beta subunit structure. The amino acid content of the protein indicated 20 cysteine residues. Analysis of the metal content indicated 0.59 +/- 0.06 mol Ni/mol hydrogenase and 6.5 +/- 1.2 mol Fe/mol hydrogenase. Antisera prepared to the hydrogenase cross-reacted with the enzyme in bacteroid extracts at all stages of the purification but did not cross-react with extracts of Alcaligenes eutrophus grown under chemolithotrophic conditions. The similarity of rhizobial hydrogenase to the particulate hydrogenases of A. eutrophus and A. latus is discussed.  相似文献   

19.
Alanine dehydrogenase from Bacillus cereus, a non-allosteric enzyme composed of six identical subunits, was purified to homogeneity by chromatography on blue-Sepharose and Sepharose 6B-CL. Like other pyridine-linked dehydrogenases, alanine dehydrogenase is inhibited by Cibacron blue, competitively with respect to NADH and noncompetitively with respect to pyruvate. The enzyme was inactivated by 0.1 M glycine/HCl (pH 2) and reactivated by 0.1 M phosphate (pH 8) supplemented with NAD+ or NADH. The reactivation was characterized by sigmoidal kinetics indicating a complex mechanism involving rate-limiting folding and association steps. Cibacron blue interfered with renaturation, presumably by competition with NADH. Chromatography on Sepharose 6B-CL of the partially renatured alanine dehydrogenase led to the separation of several intermediates, but only the hexamer was characterized by enzymatic activity. By immobilization on Sepharose 4B, alanine dehydrogenase from B. cereus retained 66% of the specific activity of the soluble enzyme. After denaturation of immobilized alanine dehydrogenase with 7 M urea, 37% of the initial protein was still bound to Sepharose, indicating that on the average the hexamer was attached to the matrix via, at most, two subunits. The ability of the denatured, immobilized subunits to pick up subunits from solution shows their capacity to fold back to the native conformation after urea treatment. The formation of "hybrids" between subunits of enzyme from B. cereus and Bacillus subtilis demonstrates the close resemblance of the tertiary and quaternary structures of alanine dehydrogenases from these species.  相似文献   

20.
A simple procedure for purifying polynucleotide phosphorylase from Escherichia coli cells by means of affinity chromatography on an RNA-Sepharose column is described. The purified enzyme preparation has a specific activity 3500-fold that of the crude extract and is essentially homogeneous, as determined by ultracentrifugation, polyacrylamide gel electrophoresis under denaturing conditions, isoelectric focusing and serological assays. It is virtually free of nuclease contamination, a property which permits its use in the synchronous phosphorolysis of RNA chains. The enzyme molecule is composed of three identical subunits of Mr = 84,000. Each subunit contains three cysteine residues, one of which reacts with 5,5'-dithiobis(2-nitrobenzoic acid) whereas the two other groups are only exposed on denaturation of the protein. All three enzyme subunits participate in the processive phosphorolysis of the poly(A) tail of each globin mRNA chain. An advantageous method was developed for synchronous phosphorolysis of RNA molecules using a molar excess of polynucleotide phosphorylase immobilized onto Sepharose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号