首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The song system of songbirds, a set of brain nuclei necessary for song learning and production, has distinctive morphological and functional properties. Utilizing differential display, we searched for molecular components involved in song system regulation. We identified a cDNA (zRalDH) that encodes a class 1 aldehyde dehydrogenase. zRalDH was highly expressed in various song nuclei and synthesized retinoic acid efficiently. Brain areas expressing zRalDH generated retinoic acid. Within song nucleus HVC, only projection neurons not undergoing adult neurogenesis expressed zRalDH. Blocking zRalDH activity in the HVC of juveniles interfered with normal song development. Our results provide conclusive evidence for localized retinoic acid synthesis in an adult vertebrate brain and indicate that the retinoic acid-generating system plays a significant role in the maturation of a learned behavior.  相似文献   

2.
Steroid sex hormones play critical roles in the development of brain regions used for vocal learning. It has been suggested that puberty-induced increases in circulating testosterone (T) levels crystallize a bird's repertoire and inhibit future song learning. Previous studies show that early administration of T crystallizes song repertoires but have not addressed whether new songs can be learned after this premature crystallization. We brought 8 juvenile song sparrows (Melospiza melodia) into the laboratory in the late summer and implanted half of them with subcutaneous T pellets for a two week period in October. Birds treated with T tripled their singing rates and crystallized normal songs in 2 weeks. After T removal, subjects were tutored by 4 new adults. Birds previously treated with T tended toward learning fewer new songs post T, consistent with the hypothesis that T helps to close the song learning phase. However, one T-treated bird proceeded to learn several new songs in the spring, despite singing perfectly crystallized songs in the fall. His small crystallized fall repertoire and initial lag behind other subjects in song development suggest that this individual may have had limited early song learning experience. We conclude that an exposure to testosterone sufficient for crystallization of a normal song repertoire does not necessarily prevent future song learning and suggest that early social experiences might override the effects of hormones in closing song learning.  相似文献   

3.
In seasonally breeding songbirds, brain nuclei of the song control system that act in song perception change in size between seasons. It has been hypothesized that seasonal regression of song nuclei may impair song discrimination. We tested this hypothesis in song sparrows (Melospiza melodia), a species in which males share song types with neighbors and must discriminate between similar songs in territorial interactions. We predicted that song sparrows with regressed song systems would have greater difficulty in discriminating between similar songs. Sparrows were housed either on short days (SD) and had regressed song circuits, or were exposed to long days and implanted with testosterone (LD+T) to induce full growth of the song circuits. We conducted two experiments using a GO/NO-GO operant conditioning paradigm to measure song discrimination ability of each group. Birds learned four (experiment 1) or three (experiment 2) pairs of song types sequentially, with each pair more similar in the number of shared song elements and thus more difficult to discriminate. Circulating T levels differed between the SD and LD+T groups. The telencephalic song nuclei HVc, RA, and area X were larger in the LD+T birds. The two groups of sparrows did not differ, however, in their ability to learn to discriminate between shared song types, regardless of the songs' similarity. These results suggest that seasonal changes in the song control system do not affect birds' ability to make difficult song discriminations.  相似文献   

4.
Oscine songbirds are exposed to many more songs than they keep for their final song repertoire and little is known about how a bird selects the particular song(s) to sing as an adult. We simulated in the laboratory the key variables of the natural song learning environment and examined the song selection process in nine hand-reared male song sparrows, Melospiza melodia, a species in which males sing 5-11 song types. During their second and third months (their presumed sensitive period), subjects were rotated equally among four live adult male tutors that had been neighbours in the field. Tutors were housed in individual aviary 'territories' in four corners of the roof of a building; subjects could see only one tutor at a time, but they could hear the others at a short distance. Later in their first year (months 5-12), half the subjects were again rotated among all four tutors and the other half were randomly stationed next to just one tutor. Results from this experiment confirm and extend the findings from our two previous field studies of song learning in this species. Young males in this experiment (1) learned whole song types, (2) learned songs from multiple tutors, (3) preferentially learned songs that were shared among their tutors, (4) learned songs that other young males in their group also chose, and (5) learned more songs from the tutor they were stationed next to during the later stage (stationary subjects). These last two results support the late influence hypothesis that interactions after a bird's sensitive period affect song repertoire development. Copyright 2000 The Association for the Study of Animal Behaviour.  相似文献   

5.
Song development in oscine songbirds relies on imitation of adult singers and thus leaves developing birds vulnerable to potentially costly errors caused by imitation of inappropriate models, such as the songs of other species. In May and June 2012, we recorded the songs of a bird that made such an error: a male Prairie Warbler (Setophaga discolor) in western Massachusetts that sang songs seemingly acquired by imitating the songs of a Field Sparrow (Spizella pusilla). Another song type in the bird's repertoire was a near‐normal Group A Prairie Warbler song, but the bird used this song in contexts normally reserved for Group B songs. Despite its abnormal singing behavior, the aberrant bird successfully defended a territory and attracted a mate that laid two clutches of eggs. Results of playbacks of the focal bird's heterospecific song suggested that neighboring conspecific males learned to associate the Field Sparrow‐like song with the focal male, and responded to the song as if it were a Prairie Warbler song. Our evidence suggests that the focal bird's aberrant singing evoked normal responses from potential mates and rivals. If such responses are widespread among songbirds, the general failure of heterospecific songs, once acquired, to spread through populations by cultural transmission is probably not attributable to a lack of recognition by conspecifics of the songs of heterospecific singers.  相似文献   

6.
We examined the effects of song tutoring on adult song preferences, volume of song-control brain regions, and activity of auditory brain regions in female house finches (Carpodacus mexicanus). Hand-reared females were tutored with local songs, foreign songs, or no song. We then examined adult song preferences, determined the Nissl-defined volume of the song-control nuclei HVc, Area X, and RA, and compared the number of cells immunoreactive for Zenk protein in the auditory regions NCM and cmHV, following playback of songs heard early in life (Tutor/Playback Match) versus not heard (Tutor/Playback Nonmatch). All hand-reared birds exhibited preferences for locally recorded song over foreign or heterospecific song. We found no difference in the volume of song-control nuclei among the three groups. As well, we found no difference in the number of Zenk immunoreactive cells in NCM and cmHV between females in the Tutor/Playback Match group and females in the Tutor/Playback Nonmatch group. Isolate-reared birds showed greater Zenk immunoreactivity following song playback than either tutored group. Thus, early auditory experience may not play a role in adult geographic song preferences, suggesting that genetic factors can lead to preferences for songs of local dialects. Song tutoring did not influence the size of song-control regions nor Zenk induction levels following song playback, suggesting that early experience with particular songs does not influence Zenk expression. However, overall greater activation in isolate females in auditory areas suggests that exposure to song early in life may increase the selectivity of Zenk activation to song playback in auditory areas.  相似文献   

7.
In many oscine passerines males’ songs, the repertoire size increases with age. At the same time it often remains unknown when and where males learn new songs. To infer the Whinchat Saxicola rubetra song learning strategy, we described and catalogued song-type repertoire, revealed age differences and examined song sharing strategies among neighbouring and distant males. We recorded song vocalizations of 40 males in a limited (104 ha) study plot during four years. Whinchats produce short and discrete songs with clear intersong pauses. In total 45 song types were allocated, the individual repertoire size averaged 23.5 ± 7.6 song types (range 9–34 song types). The males’ age significantly influenced the song-type repertoire size. The second calendar year (first breeding) males had a lower repertoire size than the older males. The majority of song types were shared by less than half of males in our sample. The Jaccard similarity indexes varied from 0.5 to 0.7. We could not find a relationship between males’ song sharing and geographic distances between their nests. We assume that Whinchat males learned new songs in the local population before territory establishment.  相似文献   

8.
Bird song is unusual as a sexually selected trait because its expression depends on learning as well as genetic and other environmental factors. Prior work has demonstrated that males who are deprived of the opportunity to learn produce songs that function little if at all in male-female interactions. We asked whether more subtle variation in male song-learning abilities influences female response to song. Using a copulation solicitation assay, we measured the response of female song sparrows (Melospiza melodia) to songs of laboratory-reared males that differed in the amount of learned versus invented material that they included and in the degree to which learned material accurately matched the model from which it was copied. Females responded significantly more to songs that had been learned better, by either measure. Females did not discriminate between the best-learned songs of laboratory-reared males and songs of wild males used as models during learning. These results provide, to our knowledge, a first experimental demonstration that variation in learning abilities among males plays a functionally important part in the expression of a sexually selected trait, and further provide support for the hypothesis that song functions as an indicator of male quality because it reflects variation in response to early developmental stress.  相似文献   

9.
There is extensive diversity among the 4000 species of songbirds in different aspects of song behavior, including the timing of vocal learning, sex patterns of song production, number of songs that are learned (i.e., repertoire size), and seasonality of song behavior. This diversity provides unparalleled opportunities for comparative studies of the relationship between the structure and function of brain regions and song behavior. The comparative approach has been used in two contexts: (a) to test hypotheses about mechanisms of song control, and (b) to study the evolution of the control system in different groups of birds. In the first context, I review studies in which a comparative approach has been used to investigate sex differences in the song system, the relationship between the number of song types a bird sings and the size of the song nuclei, and seasonal plasticity of the song control circuits. In the second context, I discuss whether the vocal control systems of parrots and songbirds were inherited from a common ancestor or independently evolved. I also consider at what stage in the phylogeny of songbirds the hormone-sensitive forebrain circuit found in modern birds first evolved. I conclude by identifying directions for future research in which a comparative approach would be productive. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 517–531, 1997  相似文献   

10.
Sexually size dimorphic brains and song complexity in passerine birds   总被引:1,自引:0,他引:1  
Neural correlates of bird song involve the volume of particularsong nuclei in the brain that govern song development, production,and perception. Intra- and interspecific variation in the volumeof these song nuclei are associated with overall brain size,suggesting that the integration of complex songs into the brainrequires general neural augmentation. In a comparative studyof passerine birds based on generalized least square models,we tested this hypothesis by exploring the interspecific relationshipbetween overall brain size and repertoire size. We found nosignificant association between song complexity of males andbrain size adjusted for body size. However, species in whichmales produced complex songs tended to have sex differencesin overall brain size. This pattern became stronger when wecontrolled statistically for female song complexity by usingsex differences in song complexity. In species with large differencesin song complexity, females evolved smaller brains than didmales. Our results suggest no role for the evolution of extendedneural space, as reflected by total brain size, owing to songcomplexity. However, factors associated with sexual selectionmirrored by sex differences in song complexity were relatedto sexual dimorphism in overall brain size.  相似文献   

11.
Previous studies have shown that female sedge warblers choose to mate with males that have more complex songs, and sexual selection has driven the evolution of both song complexity and the size of the major song control area (HVc) in the brain. In songbirds, learning from conspecifics plays a major role in song development and this study investigates the effects of isolation and exposure to song on song structure and the underlying song control system. Sibling pairs of hand-reared nestling sedge warblers were reared to sexual maturity under two conditions. Siblings in one group were reared individually in acoustic isolation in separate soundproof chambers. In the other group, siblings were reared together in an aviary with playback of recorded songs. The following spring, analysis of songs revealed that siblings reared in acoustic isolation produced normal song structures, including larger syllable repertoires than those exposed to song. We found no significant differences in the volumes of HVc, nucleus robustus archistnatalis, the lateral portion of the magnocellular nucleus and the density of dendritic spines between the two groups. Males exceeded females in all these measures, and also had a larger telencephalon. Our experiments show that complex song, sexual dimorphism in brain structure, and the size of song nuclei can all develop independently of exposure to song. These findings have important implications for how sexual selection can operate upon a complex male trait such as song and how it may also shape the more general evolution of brain structure in songbirds.  相似文献   

12.
Birdsong is a learned vocal behavior used in intraspecific communication. The motor pathway serving learned vocalizations includes the forebrain nuclei NIf, HVC, and RA; RA projects to midbrain and brain stem areas that control the temporal and acoustic features of song. Nucleus Uvaeformis of the thalamus (Uva) sends input to two of these forebrain nuclei (NIf and HVC) but has not been thought to be important for song production. We used three experimental approaches to reexamine Uva's function in adult male zebra finches. (1) Electrical stimulation applied to Uva activated HVC and the vocal motor pathway, including tracheosyringeal motor neurons that innervate the bird's vocal organ. (2) Bilateral lesions of Uva including the dorso-medial portion of the nucleus affected the normal temporal organization of song. (3) Chronic multiunit recordings from Uva during normal song and calls show bursts of premotor activity that lead the onset of some song components, and also larger bursts that mark the end of complete song motifs. These results implicate Uva in the production of learned vocalizations, and further suggest that Uva contributes more to the temporal structure than to the acoustic characteristics of song. © 1993 John Wiley & Sons, Inc.  相似文献   

13.
Both song behavior and its neural substrate are hormone sensitive: castrated adult male zebra finches need replacement of gonadal steroids in order to restore normal levels of song production, and sex steroids are necessary to establish male-typical neural song-control circuits during early development. This pattern of results suggests that hormones may be required for normal development of learned song behavior, but evidence that steroids are necessary for normal neural and behavioral development during song learning has been lacking. We addressed this question by attempting to eliminate the effects of gonadal steroids in juvenile male zebra finches between the time of initial song production and adulthood. Males were castrated at 20 days of age and received systemic implants of either an antiandrogen (flutamide), an antiestrogen (tamoxifen), or both drugs. The songs of both flutamide- and tamoxifen-treated birds were extremely disrupted relative to normal controls in terms of the stereotypy and acoustic quality of individual note production, as well as stereotypy of the temporal structure of the song phrase. We did not discern any differences in the pattern of behavioral disruption between birds that were treated with either flutamide, tamoxifen, or a combination of both drugs. Flutamide treatment resulted in a reduced size of two forebrain nuclei that are known to play some role unique to early phases of song learning [lateral magnocellular nucleus of the anterior neostriatum (IMAN) and area X (X)], but did not affect the size of two song-control nuclei that are necessary for normal song production in adult birds [caudal nucleus of the ventral hyperstriatum (HVc) and robust nucleus of the archistriatum (RA)]. In contrast, treatment with tamoxifen did not result in any changes in the size of song-control nuclei relative to normal controls, and it blocked the effects of flutamide on the neural song-control system in birds that were treated with both drugs. Castration and antisteroid treatment exerted no deleterious effects on the quality of song behavior in adult birds, indicating that gonadal hormones are necessary for the development of normal song behavior during a sensitive period.  相似文献   

14.
In sexually dimorphic zebra finches (Taeniopygia guttata), only males learn to sing their father's song, whereas females learn to recognize the songs of their father or mate but cannot sing themselves. Memory of learned songs is behaviorally expressed in females by preferring familiar songs over unfamiliar ones. Auditory association regions such as the caudomedial mesopallium (CMM; or caudal mesopallium) have been shown to be key nodes in a network that supports preferences for learned songs in adult females. However, much less is known about how song preferences develop during the sensitive period of learning in juvenile female zebra finches. In this study, we used blood-oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) to trace the development of a memory-based preference for the father's song in female zebra finches. Using BOLD fMRI, we found that only in adult female zebra finches with a preference for learned song over novel conspecific song, neural selectivity for the father's song was localized in the thalamus (dorsolateral nucleus of the medial thalamus; part of the anterior forebrain pathway, AFP) and in CMM. These brain regions also showed a selective response in juvenile female zebra finches, although activation was less prominent. These data reveal that neural responses in CMM, and perhaps also in the AFP, are shaped during development to support behavioral preferences for learned songs.  相似文献   

15.
Songbirds sing complex songs as a result of evolution through sexual selection. The evolution of such sexually selected traits requires genetic control, as well as selection on their expression. Song is controlled by a discrete neural pathway in the brain, and song complexity has been shown to correlate with the volume of specific song control nuclei. As such, the development of these nuclei, in particular the high vocal centre (HVC), is thought to be the mechanism controlling signal expression indicating male quality. We tested the hypothesis that early developmental stress selectively affects adult HVC size, compared with other brain nuclei. We did this by raising cross-fostered zebra finches (Taeniopygia guttata) under stressed and controlled conditions and determining the effect on adult HVC size. Our results confirm the strong influence of environmental conditions, particularly on HVC development, and therefore on the expression of complex songs. The results also show that both environmental and genetic factors affect the development of several brain nuclei, highlighting the developmental plasticity of the songbird brain. In all, these results explain how the complex song repertoires of songbirds can evolve as honest indicators of male quality.  相似文献   

16.
Songbirds develop their songs by imitating songs of adults. For song learning to proceed normally, the bird's hearing must remain intact throughout the song development process. In many species, song learning takes place during one period early in life, and no more new song elements are learned thereafter. In these so-called close-ended learners, it has long been assumed that once song development is complete, audition is no longer necessary to maintain the motor patterns of full song. However, many of these close-ended learners maintain plasticity in overall song organization; the number and the sequence of song elements included in a song of an individual vary from one utterance to another, although no new song elements are added or lost in adulthood. It is conceivable that these species rely on continued auditory feedback to produce normal song syntax. The Bengalese finch is a close-ended learner that produces considerably variable songs as an adult. In the present study, we found that Bengalese finches require real-time auditory feedback for motor control even after song learning is complete; deafening adult finches resulted in development of abnormal song syntax in as little as 5 days. We also found that there was considerable individual variation in the degree of song deterioration after deafening. The neural mechanisms underlying adult song production in different species of songbirds may be more diverse than has been traditionally considered. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 343–356, 1997  相似文献   

17.
Both song behavior and its neural substrate are hormone sensitive: Castrated adult male zebra finches need replacement of gonadal steroids in order to restore normal levels of song production, and sexsteroids are necessary to establish male-typical neural song-controlcircuits during early development. This pattern of results suggests that hormones may be required for normal development of learned songbehavior, but evidence that steroids are necessary for normal neuraland behavioral development during song learning has been lacking. Weaddressed this question by attempting to eliminate the effects of gonadal steroids in juvenile male zebra finches between the time of initial song production and adulthood. Males were castrated at 20 daysof age and received systemic implants of either an antiandrogen (flutamide). an antiestrogen (tamoxifen), or both drugs. The songs of both flutamide-and tamoxifen-treated birds were extremely disrupted relative to normal controls in terms of the stereotypy and acoustic quality of individual note production, as well as stereotypy of the temporal structure of the song phrase. We did not discern any differences in the pattern of behavioral disruption between birds that were treated with either flutamide, tamoxifen, or a combination of both drugs. Flutamide treatment resulted in a reduced size of two forebrain nuclei that are known to play some role unique to early phases of song learning [lateral magnocellular nucleus of the anterior neostriatum (IMAN) and area X (X)], but did not affect the size of two song-control nuclei that are necessary for normal song productionin adult birds [caudal nucleus of the ventral hyperstriatum (HVc) and robust nucleus of the archistriatum (RA)]. In contrast, treatment with tamoxifen did not result in any changes in the size of song-control nuclei relative to normal controls, and it blocked the effects of flutamide on the neural song-control system in birds that were treated with both drugs. Castration and antisteroid treatment exerted no deleterious effects on the quality of song behavior in adult birds, indicating that gonadal hormones are necessary for the development of normal song behavior during a sensitive period. © 1992 John Wiley & Sons, Inc.  相似文献   

18.
Territorial song structures are often the most prominent characters for distinguishing closely related taxa among songbirds. Learning processes may cause convergent evolution of passerine songs, but phylogenetic information of acoustic traits can be investigated with the help of molecular phylogenies, which are not affected by cultural evolutionary processes. We used a phylogeny based on cytochrome b sequences to trace the evolution of territorial song within the genus Regulus. Five discrete song units are defined as basic components of regulid song via sonagraphic measurements. Traits of each unit are traced on a molecular tree and a mean acoustic character difference between taxon pairs is calculated. Acoustic divergence between regulid taxa correlates strongly with genetic distances. Syntax features of complete songs and of single units are most consistent with the molecular data, whereas the abundance of certain element types is not. Whether song characters are innate or learned was interpreted using hand-reared birds in aviary experiments. We found that convergent character evolution seems to be most probable for learned acoustic traits. We conclude that syntax traits of whole verses or subunits of territorial song, especially innate song structures, are the most reliable acoustic traits for phylogenetic reconstructions in Regulus.  相似文献   

19.
The learned songs of songbirds often cluster into population-wide types. Here, we test the hypothesis that male and female receivers respond differently to songs depending on how typical of those types they are. We used computational methods to cluster a large sample of swamp sparrow (Melospiza georgiana) songs into types and to estimate the degree to which individual song exemplars are typical of these types. We then played exemplars to male and female receivers. Territorial males responded more aggressively and captive females performed more sexual displays in response to songs that are highly typical than to songs that are less typical. Previous studies have demonstrated that songbirds distinguish song types that are typical for their species, or for their population, from those that are not. Our results show that swamp sparrows also discriminate typical from less typical exemplars within learned song-type categories. In addition, our results suggest that more typical versions of song types function better, at least in male–female communication. This finding is consistent with the hypothesis that syllable type typicality serves as a proxy for the assessment of song learning accuracy.  相似文献   

20.
Birdsong is a complex learned vocal behavior that relies on auditory experience for development.However,it appears that among different species of close-ended songbirds,there are some variations in the necessity of auditory feedback for maintaining stereotyped adult song.In zebra finches,the deterioration of adult songs following deafness depends on the birds' age.It is unknown whether this age effect is a general rule in other avian species as well.Therefore,we chose Bengalese finches,whose songs show more...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号