共查询到20条相似文献,搜索用时 15 毫秒
1.
Increased sympathetic innervation in the cerebral and mesenteric arteries of hypertensive rats 总被引:2,自引:0,他引:2
The density of catecholamine-containing nerve fibers was studied in the cerebral and mesenteric arteries from normotensive Wistar-Kyoto rats (WKY), spontaneously hypertensive rats (SHR), and stroke-prone SHR (SHRSP) in the growing (SHR, WKY) and adult (SHR, SHRSP, WKY) animals. Cerebral arteries from SHR showed an increased adrenergic innervation from day 1. The nerve plexuses reached an adult pattern earlier in SHR than in WKY. The arteries from adult SHR and SHRSP (22 weeks old) showed a markedly higher nerve density than WKY. There was a positive linear correlation between blood pressure and nerve density for four cerebral arteries. The mesenteric arteries were not innervated at birth. However, hyperinnervation of these arteries in the SHR was already present at 10 days of age as compared with WKY. Sympathectomy with anti-nerve growth factor and guanethidine caused a complete disappearance of fluorescent fibers in the mesenteric arteries from SHR and WKY, and in the cerebral arteries of WKY. The same procedure caused only partial denervation of the cerebral arteries from hypertensive animals. We postulate that the increase in nerve density in the cerebral arteries from the hypertensive rats may contribute to the development of arterial hypertrophy in chronic hypertension through the trophic effect of the sympathetic innervation on vascular structure. 相似文献
2.
Summary The pineal gland of the rat is located near the brain surface and is via a slender stalk connected to lamina intercalaris which constitutes a cell formation between the habenular and posterior commissures, continuing to the subcommissural organ. The stalk and lamina intercalaris, like the pineal proper, exhibited a yellow, formaldehyde-induced fluorescence which showed the histochemical and pharmacological properties of 5-HT. All these structures were richly supplied with catecholamine-fluorescent nerves which could be further followed rostrally from lamina intercalaris, mixing with the non-fluorescent commissural fibres and stria terminalis, into the medial habenular nucleus in which they extensively supplied both blood vessels and non-fluorescent nerve cells. Cytospectrofluorometric and chemical analysis suggested that the fluorescent nerves stored noradrenaline. This was supported by the finding that they disappeared after bilateral cervical sympathectomy (as did the fluorescent nerves in the pineal complex). In the medial habenular nucleus also catecholamine-containing and 5-HT-containing nerves of central origin were present.The occurrence of a rich, peripheral sympathetic innervation in the medial habenular nucleus of the brain offers possibilities for a previously not observed sympathetic influence on this nucleus. Also the arrangement, and the apparent continuity of the sympathetic innervation in the pineal gland, the lamina intercalaris, and the medial habenular nucleus, suggests some functional interconnection or coordination between these structures. 相似文献
3.
4.
5.
6.
Igawa A Nozawa T Yoshida N Fujii N Inoue M Tazawa S Asanoi H Inoue H 《American journal of physiology. Heart and circulatory physiology》2000,278(4):H1134-H1141
We examined cardiac neuronal function and beta-receptor with a dual-tracer method of [(131)I]meta-iodobenzylguanidine (MIBG) and [(125)I]iodocyanopindolol (ICYP) in rat heart failure after myocardial infarction (MI). In rats with MI, left ventricular (LV) systolic function decreased, and LV dimension and right ventricular (RV) mass increased gradually. MIBG accumulations of the noninfarcted LV (remote region) and RV decreased by 15% at 1 wk compared with sham-operated rats, and these accumulations were restored by 71% and 56%, respectively, at 24 wk compared with age-matched sham rats despite sustained depletion of myocardial norepinephrine contents in these regions. ICYP accumulation of the remote region and of the RV did not decrease at any stages. Myocardial MIBG distribution was heterogeneous at 1 wk when it was lower in the peri-infarcted region than in the remote region, associated with reduced ICYP accumulation in the peri-infarcted region. The heterogeneous distribution of both isotopes disappeared at 12 wk. Thus cardiac sympathetic neuronal alteration was coupled with downregulation of beta-receptors in rat heart failure after MI. The abnormal adrenergic signaling occurred heterogeneously in terms of ventricular distribution and time course after MI. 相似文献
7.
8.
9.
Kumai T Takeba Y Matsumoto N Nakaya S Tsuzuki Y Yanagida Y Hayashi M Kobayashi S 《Life sciences》2007,81(15):1193-1198
We investigated the effects of fasudil, a Rho kinase inhibitor, on hypertension in spontaneously hypertensive rats and on the catecholamine synthetic pathway. Ten-week-old male SHR and Wistar-Kyoto rats were administered fasudil (10 mg/kg/day s.c.) for 4 days. Systolic blood pressure was measured using the tail-cuff method. Catecholamine levels were measured with high-performance liquid chromatography-ECD methods. Tyrosine hydroxylase protein levels were measured in Western blot analysis. The tyrosine hydroxylase mRNA level was measured using real-time PCR methods. Fasudil significantly decreased systolic blood pressure in spontaneously hypertensive rats, but not in Wistar-Kyoto rats. Fasudil also significantly decreased catecholamine, tyrosine hydroxylase protein, and tyrosine hydroxylase mRNA levels in the adrenal medulla of spontaneously hypertensive rats. These results suggest that the depressor effects of fasudil on hypertension in spontaneously hypertensive rats may be related to inhibition of the catecholamine synthetic pathway. 相似文献
10.
Sitagliptin attenuates sympathetic innervation via modulating reactive oxygen species and interstitial adenosine in infarcted rat hearts 下载免费PDF全文
Tsung‐Ming Lee Wei‐Ting Chen Chen‐Chia Yang Shinn‐Zong Lin Nen‐Chung Chang 《Journal of cellular and molecular medicine》2015,19(2):418-429
We investigated whether sitagliptin, a dipeptidyl peptidase‐4 (DPP‐4) inhibitor, attenuates arrhythmias through inhibiting nerve growth factor (NGF) expression in post‐infarcted normoglycemic rats, focusing on adenosine and reactive oxygen species production. DPP‐4 bound adenosine deaminase has been shown to catalyse extracellular adenosine to inosine. DPP‐4 inhibitors increased adenosine levels by inhibiting the complex formation. Normoglycemic male Wistar rats were subjected to coronary ligation and then randomized to either saline or sitagliptin in in vivo and ex vivo studies. Post‐infarction was associated with increased oxidative stress, as measured by myocardial superoxide, nitrotyrosine and dihydroethidium fluorescent staining. Measurement of myocardial norepinephrine levels revealed a significant elevation in vehicle‐treated infarcted rats compared with sham. Compared with vehicle, infarcted rats treated with sitagliptin significantly increased interstitial adenosine levels and attenuated oxidative stress. Sympathetic hyperinnervation was blunted after administering sitagliptin, as assessed by immunofluorescent analysis and western blotting and real‐time quantitative RT‐PCR of NGF. Arrhythmic scores in the sitagliptin‐treated infarcted rats were significantly lower than those in vehicle. Ex vivo studies showed a similar effect of erythro‐9‐(2‐hydroxy‐3‐nonyl) adenine (an adenosine deaminase inhibitor) to sitagliptin on attenuated levels of superoxide and NGF. Furthermore, the beneficial effects of sitagliptin on superoxide anion production and NGF levels can be reversed by 8‐cyclopentyl‐1,3‐dipropulxanthine (adenosine A1 receptor antagonist) and exogenous hypoxanthine. Sitagliptin protects ventricular arrhythmias by attenuating sympathetic innervation via adenosine A1 receptor and xanthine oxidase‐dependent pathways, which converge through the attenuated formation of superoxide in the non‐diabetic infarcted rats. 相似文献
11.
12.
Huang BS Leenen FH 《American journal of physiology. Heart and circulatory physiology》2005,288(5):H2491-H2497
In rats post-myocardial infarction (MI), sympathetic hyperactivity can be prevented by blockade of brain mineralocorticoid receptors (MR). Stimulatory responses to central infusion of aldosterone can be blocked by benzamil and therefore appear to be mediated via Na+ channels, presumably epithelial Na+ channels (ENaC), in the brain. To evaluate this concept of endogenous mineralocorticoids in Wistar rats post-MI, we examined effects of blockade of MR and Na+ channels in the brain. At 3 days after coronary artery ligation, intracerebroventricular infusions were started with spironolactone (400 ng.kg(-1).h(-1)) or its vehicle, or with benzamil (4 microg.kg(-1).h(-1)) or its vehicle, using osmotic minipumps. Rats with sham ligation served as control. After 4 wk, in conscious rats, mean arterial pressure, heart rate, and renal sympathetic nerve activity were recorded at rest and in response to air-jet stress, intracerebroventricular injection of the alpha2-adrenoceptor agonist guanabenz, and intravenous infusion of phenylephrine and nitroprusside for baroreflex function. MI size was similar among the four groups of rats (approximately 31%). In rats treated post-MI with vehicles, cardiac function was decreased, sympathetic reactivity was enhanced, and baroreflex function was impaired. Blockade of brain Na+ channels or brain MR similarly prevented sympathetic hyperactivity and impairment of baroreflex function and improved cardiac function. These findings suggest that in rats post-MI, increased binding of endogenous agonists to MR increases ENaC activity in the brain and thereby leads to sympathetic hyperactivity and progressive left ventricular dysfunction. 相似文献
13.
Using immunohistochemical methods, the morphological features of the sympathetic nerve structures in the pancreas of newborn, pubescent, and aging rats have been studied. The neural composition of intramural ganglia has been described. The intramural ganglia were shown to include chromaffin cells. In many ganglia of the pancreas, two types of pericellular nerve apparatuses have been detected simultaneously: tyrosine hydroxylase-containing catecholaminergic synaptic terminals and PGP 9.5-immunopositive cholinergic synapses. It was established that the density of catecholaminergic structures in the pancreas of rats decreases with age. 相似文献
14.
Postnatal development of sympathetic and sensory innervation of the rhesus monkey ovary. 总被引:1,自引:0,他引:1
We have used immunofluorescence to study the postnatal development of the sympathetic and sensory innervation to the rhesus monkey (Macaca mulatta) ovary. Sympathetic nerves were identified as adrenergic by their content of tyrosine hydroxylase (TH)-like immunoreactivity and as peptidergic by the presence of neuropeptide Y (NPY). Fibers containing substance P (SP) or calcitonin gene-related peptide (CGRP)-like immunoreactivity were considered as sensory, whereas vasoactive intestinal peptide (VIP)-positive fibers were only defined as peptidergic because VIP may be present in both sympathetic and sensory nerves. Ovaries from neonatal (2-mo-old), juvenile (9-18-mo-old), peripubertal (3-3.5-yr-old), adult (9-14-yr-old), and senescent (20-27-yr-old) monkeys were studied. At all ages, with the exception of senescence, TH-, NPY-, and VIP-containing fibers were associated with follicles in different developmental stages. In peripubertal and adult animals, some primordial follicles were found to be selectively innervated by VIPergic fibers that almost completely encircled each follicle. Both sympathetic and VIP fibers were also detected in the interstitial tissue and associated with the ovarian vasculature at all ages. The number of sympathetic and VIP fibers increased significantly (p < 0.01) between 2 mo and 9-18 mo of age, and again increased (p < 0.01) around the age of puberty (approximately 3 yr of age). After this time, the number of NPY and TH fibers remained constant. Conversely, the number of VIP fibers decreased (p < 0.05) by 9-14 yr of age, but remained constant thereafter.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
15.
16.
Aguila HL 《BioEssays : news and reviews in molecular, cellular and developmental biology》2006,28(7):687-691
Once hematopoiesis is established in the bone marrow, a continuous egress of hematopoietic stem cells (HSCs) to the periphery occurs at a low frequency. It has been proposed that this phenomenon is part of a regenerative homeostatic mechanism that ensures the maintenance of hematopoiesis through the life of the individual. The administration of certain cytotoxic drugs or cytokines can enhance the mobilization of hematopoietic progenitors to the periphery. During the past 15 years, granulocyte-colony stimulating factor (G-CSF) has been used as a standard cytokine for mobilization protocols in experimental models and in humans. Despite extensive efforts by multiple groups, a definitive mechanism explaining its role in mobilization has not been provided. In a recent paper, Katayama et al., through a series of clever associations supported by well-defined experimental systems, proposed that signals through the sympathetic nervous system modify the activity of the hematopoietic niche, acting as regulators of the mobilization of hematopoietic progenitors. This surprising finding adds a new level of complexity to the cellular milieu responsible for generation and maintenance of the hematopoietic niche. 相似文献
17.
Immunity and inflammation are well established factors in the pathogenesis of pulmonary arterial hypertension (PAH). We aimed
to investigate whether dexamethasone (Dex), a potent immunosuppressant, could prevent the development of monocrotaline (MCT)-induced
PAH in rats as compared with pyrrolidine dithiocarbamate (PDTC) and its effect on the immune mechanism. PAH in rats (n = 66) was induced by MCT (50 mg/kg) injected intraperitoneally. Two days after MCT treatment, Dex (1.0 mg/kg) and PDTC (100 mg/kg)
were administered once daily for 21 days. Samples were collected at 7, 14, and 21 days. Dex effectively inhibited MCT-induced
PAH and reduced the T-helper (Th) 1 dominant cytokine response (interferon-γ) but up-regulated the Th2 one (interleukin 4).
It increased the number of CD4+ T cells and decreased the number of CD8+ T cells around pulmonary arteries, upregulated the
mRNA expression of fractalkine and downregulated that of CX3CR1 in the lung. Serum levels of interferon γ and interleukin
4 did not significantly differ from that of controls. Dex attenuated the process of MCT-induced PAH through its immunomodulatory
property. Dex could be an appropriate therapy for PAH, although more studies are needed to define the appropriate treatment
regimen. 相似文献
18.
19.
Endurance training restores peritoneal macrophage function in post-MI congestive heart failure rats.
M L Batista R V T Santos E M Oliveira M C L Seelaender L F B P Costa Rosa 《Journal of applied physiology》2007,102(5):2033-2039
Congestive heart failure (CHF) induces a state of immune activation, and peritoneal macrophages (M phi s) may play an important role in the development and progression of one such condition. Moderate endurance training modulates peritoneal M phi function. We evaluated the effect of endurance training on different stages of the phagocytic process and in the production of interleukin-6 (IL-6), interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha) after LPS stimulation. Either ligation of the left coronary artery or Sham operations were performed in adult Wistar rats. After 4 wk, control (Sham operated) and MI (ligation of the left coronary artery) animals were randomly assigned to either a sedentary (Sham-operated sedentary, n = 7 and MI sedentary, n = 10) or a trained group (Sham-operated trained, n = 8 and MI trained, n = 8). Trained rats ran on a treadmill (0% grade at 13-20 m/min) for 60 min/day, 5 days/wk, for 8-10 wk, whereas sedentary rats had only limited activity. Training increased maximal oxygen uptake normalized for body weight (ml.kg(-1).min(-1)), as well as skeletal muscle citrate synthase maximal activity, when compared with sedentary groups. The resident and total cell number, the chemotaxis index, and the production of TNF-alpha stimulated by LPS were significantly higher in the MI sedentary group when compared with the Sham sedentary group. Moderate endurance training reversed these alterations promoted by post-MI. These results demonstrate that moderate intensity exercise training modulates peritoneal M phi function and induces beneficial metabolic effects in rats with post-MI CHF. 相似文献
20.
Uterine innervation undergoes substantial reorganization associated with changes in reproductive status. Nerves innervating the uterus are decreased in pregnancy and puberty, and even the normal rodent estrous cycle is characterized by fluctuations in numbers of myometrial nerve fibers. During the follicular (proestrus/estrous) phase of the estrous cycle, intact nerves are rapidly depleted and then return over the next 2-3 days in the luteal (metestrus/diestrus) phase. We hypothesize that uterine nerve depletion is initiated by increased circulating estrogen in the follicular phase. However, studies have not shown whether estrogen can reduce uterine innervation and, if so, whether the time course is compatible with the rapid changes observed in the estrous cycle. These questions were addressed in the present study. Mature ovariectomized virgin rats received 17-beta-estradiol as a single injection (10 microg/kg s.c.) or chronically from timed-release pellets (0.1 microg/pellet for 3 weeks sustained release). Total (protein gene-product 9.5-immunoreactive) and sympathetic (dopamine beta-hydroxylase-immunoreactive) uterine innervation was assessed quantitatively. Both total and sympathetic innervation was abundant in uterine longitudinal smooth muscle of ovariectomized rats. However, following acute or chronic estrogen administration, total and sympathetic fiber numbers were markedly decreased. This was not due to altered uterine size, as reductions persisted after correcting for size differences. Our results indicate that sympathetic nerves are lost from uterine smooth muscle after estradiol treatment in a manner similar to that seen in the intact animal during estrus and pregnancy. This suggests that the rise in estradiol prior to estrus is sufficient to deplete uterine sympathetic innervation. 相似文献