首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abscission zone tissue of citrus was shown to have a higher rate of protein synthesis than tissue distal or proximal to it, based on the incorporation of leucine-1-14C. The proximal tissue had the slowest rate of protein synthesis. As the tissue approached abscission, the rate of synthesis in the abscission zone decreased and the differences in rate of protein synthesis between the 3 zones almost disappeared. IAA, which delayed abscission, maintained the protein synthesis gradient between the abscission and proximal zones, but the distal zone tissue was as active in protein synthesis as the abscission zone. Differences in uptake of the leucine were also observed between different zones and treatments. Regardless of the tissue or the treatment, there was a sharp increase in uptake at the 24 hour point.

Direct incubation of abscission zones in IAA and gibberellic acid (GA) indicated that the action of gibberellic acid on abscission is probably through a stimulation of protein synthesis, while IAA seems to act by maintaining the existing rate of protein synthesis in the cells of the abscission zone.

  相似文献   

2.
Measurements were made of the growthof the sub-apical region of decapitated, etiolated epicotyls of Pisum sativum L. cv. Alaska after treatments with indoleacetic acid (IAA), gibberellic acid (GA) and triiodobenzoic acid (TIBA). Growth was measured either at the end of a 2-day period, at short intervals during growth, or was monitored continuously for 2–3 h using a position-sensing transducer. In experiments measuring growth after 2 days, high levels (0.1–10 μg/plnat) of IAA caused expansion, whereas similar levels of GA caused elongation. When both hormones were applied together, the effects of IAA were dominant and expansion ensued, even when GA was present at 100 times the amount of IAA. Very low amounts of IAA (0.5–5 ng/plant), however, caused elongation. The elongation elicited by high GA or low IAa was inhibited to a similar extent by TIBA and this inhibition of elongation was associated with an increased expansion at the extreme tip. When application of the hormones was delayed, GA-induced elongation was reduced considerably, IAA-induced elongation was lessened somewhat and IAA-induced expansion was partially converted into elongation. In experiments measuring elongation at short intervals, high levels of IAA caused rapid elongation followed after 3 to 6 h by expnasion. Both GA and low levels of IAA extended the duration of elongation with little apparent effect on the rate of growth. In fast-growth experiments, low, intermediate and high levels of IAA doubled the rate of elongation with a lag period of about 20 min, whereas GA had at most a very slight stimulatory effect on the growth rate. It is concluded that the main role of GA in this system is to maintain physiological levels of IAA in the growing zone and that the level of IAA present determines whether elongation or expansion will take place.  相似文献   

3.
Sachar , R. C. (U. Delhi, India.) Comparative effects of gibberellin and indole compounds on the induction of parthenocarpy in sexually incompatible Pereskia aculeata. Amer. Jour. Bot. 49(9): 913–917. Illus. 1962.—The effects of indoleacetic acid (IAA), indolebutyric acid (IBA), gibberellin (G) and gibberellic acid (GA) were studied on the fruit growth of the sexually incompatible Pereskia. Under natural conditions, this plant did not produce any fruits and seeds, and the flowers abscised a week after anthesis. IAA (50–500 ppm) delayed the formation of an abscission layer by another 2 weeks, but it was ineffective in inducing parthenocarpy. IBA (50–500 ppm) induced fruit-set in only 15% of the flowers. Best response was achieved by G (100–500 ppm), or GA (100–500 ppm), which gave 100% fruit-set. The effect of GA in inducing parthenocarpy was not inhibited when used in conjunction with IAA. Maximum size of the fruits was obtained with 2 sprayings of GA, and subsequent sprays were of no consequence. Further, fruit size was the largest when GA or G was sprayed at anthesis, or on old flower buds, but it was much less when the chemicals were sprayed on young flower buds. There was no stimulation of the growth of ovules; instead, a translucent mucilaginous placental tissue developed within the cavity of the fruit wall. Attempts were made to culture ovules and the placental tissue on artificial nutrient medium, but without success.  相似文献   

4.
Gibberellic acid (GA) has no effect on abscission when applied proximally or distally to the abscission zones of debladed petioles of Coleus. Application of GA to the stem apex increases the rate of abscission of debladed petioles. The effect on abscission is accompanied by an increase in the level of endogenous auxin in the stem. Correspondingly proximal applications of indoleacetic acid (IAA) accelerate abscission, whereas the longevity of the debladed petiole approaches that of the intact leaf only in the presence of a continuous distal supply of IAA. No correlation is found between petiole elongation and its longevity. The experimental data support the view that auxin acts at the abscission zone in regulating separation processes and that the effect of GA is through its effect on the level of endogenous auxin.  相似文献   

5.
脱落调节物质对植物器官脱落的调控   总被引:3,自引:0,他引:3  
器官脱落是植物生命过程中重要的生理现象.植物体内的许多激素和非激素类物质(扩展蛋白、H_2O_2、细胞壁水解酶等)都参与脱落过程的调控,而且是相互协同配合,共同发挥作用.本文综述了生长素、乙烯、脱落酸、赤霉素和茉莉酸等植物激素,以及非激素类物质扩展蛋白、H_2O_2和两种主要的细胞壁水解酶(纤维素酶和多聚半乳糖醛酸酶)在植物器官脱落过程中的调控作用,并对它们在植物器官脱落调控中的相互作用进行分析,以期为相关研究提供信息.  相似文献   

6.
Distal applications of indol-3yl-acetic acid (IAA) to debladed cotyledonary petioles of cotton (Gossypium hirsutum L.) seedlings greatly delayed petiole abscission, but similar applications of phenylacetic acid (PAA) slightly accelerated abscission compared with untreated controls. Both compounds prevented abscission for at least 91 h when applied directly to the abscission zone at the base of the petiole. The contrasting effects of distal IAA and PAA on abscission were correlated with their polar transport behaviour-[1-14C]IAA underwent typical polar (basipetal) transport through isolated 30 mm petiole segments, but only a weak diffusive movement of [1-14C]PAA occurred.Removal of the shoot tip substantially delayed abscission of subtending debladed cotyledonary petioles. The promotive effect of the shoot tip on petiole abscission could be replaced in decapitated shoots by applications of either IAA or PAA to the cut surface of the stem. Following the application of [1-14C]IAA or [1-14C]PAA to the cut surface of decapitated shoots, only IAA was transported basipetally through the stem. Proximal applications of either compound stimulated the acropetal transport of [14C]sucrose applied to a subtending intact cotyledonary leaf and caused label to accumulate at the shoot tip. However, PAA was considerably less active than IAA in this response.It is concluded that whilst the inhibition of petiole abscission by distal auxin is mediated by effects of auxin in cells of the abscission zone itself, the promotion of abscission by the shoot tip (or by proximal exogenous auxin) is a remote effect which does not require basipetal auxin transport to the abscission zone. Possible mechanisms to explain this indirect effect of proximal auxin on abscission are discussed.  相似文献   

7.
Skok J 《Plant physiology》1968,43(2):215-223
Stem applications of indole-3-acetic acid (IAA) or gibberellic acid (GA) did not prevent or alter tumor or teratoma formation in debudded tobacco plants (Nicotiana tabacum L., var. One Sucker). The materials produced intense (in case of GA) and moderate (in case of IAA) stem proliferations when applied to debudded plants but were without effect on intact plants.

The results suggest that debudding-tumors are probably not related to or a result of an auxin or gibberellin deficit and that total debudding has a marked physiological effect on the plant. The altered physiological condition of the debudded plant, indicated by its responses to IAA and GA, may likely be related to tumor and teratoma formation.

  相似文献   

8.
An experiment was conducted with field-grown cotton (Gossypium hirsutum L.) to determine the effects of drought and an increase in available photosynthate on the abscisic acid (ABA) and indoleacetic acid (IAA) contents of 3-day-old bolls and their abscission zones. Photosynthate availability was manipulated by removing about two-thirds of the plants to permit increased irradiance, and thus photosynthesis, in the plant canopy. The demand for photosynthate was decreased by removing all bolls from the remaining plants. The thinning and defruiting operations were performed about 3 weeks after first flower. Control plants were neither thinned nor defruited. Effects of water deficit were observed by making three harvests at different times during a 2-week irrigation cycle. Increasing the availability of photosynthate increased boll retention, but had relatively little effect on the concentrations of ABA and IAA in bolls. However, it did increase the concentration of IAA in abscission zones. Water deficit increased the ABA content of bolls and abscission zones and decreased the IAA content of bolls and abscission zones. Across all treatments, the IAA content of abscission zones was positively correlated, and the ABA content of bolls was negatively correlated, with boll retention. The results indicate that stresses change the hormonal balance in ways that are consistent with observed increases in fruit abscission.  相似文献   

9.
Abscisic Acid, Auxin, and Ethylene in Explant Abscission   总被引:1,自引:0,他引:1  
Experiments with explants of Phaseolus vulgaris L., cv. CanadianWonder, show that abscission and the associated rise in oarboxymethyl-cellulaseactivity in the separation zone are initiated by a peak in ethyleneproduction during senescence of pulvinar tissue distal to thezone. Distal applications of abscisic acid (ABA) induce an earlierpeak in ethylene production, increase cellulase activity, andpromote abscission. ABA is more effective in these ways if treatmentis delayed from 0 to 24 h after excision. With increasing concentrations of ABA the maximum rate of ethylene production is achievedsooner. Indol-3yl-acetic acid (IAA) and ABA are antagonisticin this system and have opposing effects. IAA retards the timeof peak ethylene-production and delays abscission. Explantsmay be retained for long periods without abscinding if incubatedin an ethylene-free atmosphere: the addition of ethylene forany one 24-h period (except the first 24 h after excision) willinduce abscission. The initial period of insensitivity to ethyleneis extended by distal applications of IAA. Ethylene-inducedabscission can be inhibited by IAA applied up to 72 h afterexcision provided the ethylene is not applied first. It is proposedthat abscission in the explant is controlled at two levels:(1) an auxin-dependent stage determining the duration of insensitivityto ethylene; (2) the timing of a rise in ethylene productionin senescing tissue distal to the separation zone. An auxin-ethylenebalance-mechanism at the separation zone is discussed.  相似文献   

10.
Abscission of debladed petioles of Coleus was observed following spray applications of gibberellic acid (GA) to the foliage. Sprays were applied to some branches which were left intact (inducing branches), or to adjacent branches whose leaves were later debladed (induced branches). In all experiments three applications of GA were made after which the induced branches were debladed, but in one series deblading was delayed for a week after the last spray application. All treatments resulted in accelerated petiole abscission relative to the controls. Differences between the results of these experiments and the results of similar, earlier experiments with indoleacetic acid (IAA) are discussed. The evidence suggests that GA accelerates abscission by a different mechanism than does IAA.  相似文献   

11.
When fully filled pods of bean plants were deseeded, the rate of axillary bud growth and the chlorophyll content of leaves were increased. Application of 0.1% indoleacetic acid (IAA) in lanolin on the deseeded pods caused abscission of axillary buds, inhibited growth of the remaining buds, and decreased leaf chlorophyll content. The response of bud development to fruit-applied IAA was concentration dependent between 0.001 and 0.1% IAA (representing from 2 to 200 micrograms IAA per fruit) resulting in greater growth inhibition at higher IAA concentrations.  相似文献   

12.
Chloramphenicol, actinomycin D, and other inhibitors of protein synthesis promote abscission in several plant genera. Abscission is accelerated in species where an abscission layer is present, as well as in tissue where no abscission layer develops prior to abscission. The inhibitors promote abscission in species where cell division is reported to precede the separation processes as well as in tissues where no cell division is associated with the initiation of abscission. Indoleacetic acid (IAA) or auxin precursors, when applied with chloramphenicol and aclinomycin D, overcome the promotive effects of the inhibitors on abscission. These inhibitors apparently do not promote abscission through their effects on auxin precursor conversion, IAA transport, and IAA destruction in the petiole. IAA increases the incorporation of leucine-1-14C into a trichloroacetic acid precipitable fraction of the abscission zone under conditions where abscission is retarded. A low concentration of IAA which accelerates abscission, decreases incorporation of leucine into protein. Other promoters of abscission — chloramphenicol, d-aspartic acid, and gibberellic acid —also decrease the incorporation of leucine into the protein of the abscission zone. The data indicate that enzymes required for the degradative processes associated with abscission are already present in the abscission zone whereas a continuous synthesis of protein is required for the retention of the leaf.  相似文献   

13.
Light control of leaf abscission in Coleus (Coleus blumei Benthcv. Ball 2719 Red) appears to be regulated by the quantity ofendogenous auxin transported from the leaf blade to the abscissionzone. Gas chromatographic—mass spectrophotometric analysisindicated that diffusate collected from leaf tissue treatedwith red light contained significantly higher levels of auxinthan dark and far-red light-treated leaf tissue. In addition,diffusate from red light-treated tissue inhibited abscissionof leafless petioles while diffusate from far-red light-treatedtissue promoted abcission when compared with diffusate fromdark-treated tissue. The effect of red light on abscission couldbe mimicked by IAA, but not by other phytohormones. An auxintransport inhibitor, 2, 3, 5-triiodobenzoic acid (TIBA), appliedeither as a lanolin ring around the petiole or vacuum infiltratedinto tissue, could completely eliminate any red light effecton abscission. The data are consistent with a phytochrome-mediatedlight regulation of endogenous auxin level in the leaf whichthen controls abscission. Key words: Abscission, Coleus, IAA, plant hormones, red (far-red) light, TIBA  相似文献   

14.
The petiole abscission induced by deblading cotyledonary leavesof cotton (Gossypium hirsutum L. cv. Delta Pine) was acceleratedby the presence of the intact shoot apex or, in decapitatedplants and explants, by application to the stem (proximal application)of indol-3yl-acetic acid (IAA) or 1-aminocyclopropane-l-carboxylicacid (ACC). IAA and ACC accelerated the abscission of debladedpetioles whether applied above or below the cotyledonary node.Transport of IAA to the node was not required for the responseto proximal IAA. [2,3-14C]ACC was readily transported to thenodal region whether applied to the stem above or below thenode. Application of IAA or ACC to the stem did not induce theabscission of intact leaves or of debladed petioles treateddistally with IAA The acceleration of abscission by proximal IAA, but not thatcaused by ACC, was prevented if explants were treated with a-aminooxyaceticacid (AOA), an inhibitor of ACC-synthase. AOA also preventedthe acceleration of abscission caused by the shoot apex. Theprogress of abscission in debladed explants was greatly delayedby silver thiosulphate (STS—an inhibitor of ethylene action),whether or not the explants were treated with IAA or ACC. Itis suggested that the speeding effects of the shoot apex andof proximal auxin on the abscission of debladed petioles requiresauxin-induced ACC synthesis. The possibility is discussed thatACC may function as a mobile abscission promoter Key words: Abscission, ACC, ACC-synthase, cotton (Gossypium), proximal auxin  相似文献   

15.
Experiments were conducted with field-grown cotton (Gossypium hirsutum L.) in 1985 and 1986 to determine effects of water deficit on levels of conjugated indole 3-acetic acid (IAA) and abscisic acid (ABA) in young fruits (bolls) and their abscission zones in relation to boll retention. Tissues were harvested three times during an irrigation cycle in 1985. They were harvested twice during an irrigation cycle and once after irrigation in 1986 to determine extent of recoveries of measured parameters. As reported earlier, the free IAA content of abscission zones decreased with moisture stress. Irrigation caused a partial recovery in free IAA content of abscission zones and caused a partial recovery in rate of boll retention. In contrast to free IAA, conjugated IAA increased with water deficit, both in 3-day-old bolls and in their abscission zones. Bolls contained much more ester IAA than their abscission zones. Some, but not all, of the increase in ester IAA in bolls during moisture stress could have come from a conversion of amide-linked IAA. Amide IAA decreased slightly during stress and increased after irrigation, but the concentration was low relative to ester IAA. Free and conjugated ABA both increased during stress and decreased after irrigation. However, the concentration of conjugated ABA remained relatively high in abscission zones. Ester IAA, being more resistant than free IAA to enzymic destruction during stress, may hasten recovery of fruit retention after relief of stress by providing a source of free IAA in abscission zones to inhibit continued abscission.  相似文献   

16.
目的:优化利用高效液相色谱法测定棉花组织培养过程中吲哚-3-乙酸(IAA)、玉米素(ZT)、赤霉素(GA3)和脱落酸(ABA)等4种植物内源激素的条件,了解棉花胚性愈伤组织发生过程中4种内源激素及激素含量比例的规律性变化,以及添加不同外源激素对内源激素和愈伤组织的影响,为棉花组织培养由经验型变为理论型提供基础。方法:采用高效液相色谱法。结果:棉花胚性愈伤组织发生过程中4种内源激素及激素含量比例呈规律性变化:ZT、ABA、ABA/GA3、ABA/IAA呈现先上升后下降的趋势,GA3呈现先上升后下降再上升的趋势,ZT/IAA呈现明显的上升-下降-上升-下降的趋势;不同激素组合诱导下愈伤组织中内源激素含量及愈伤组织状态也有较大差别。结论:研究结果对指导组织培养过程中激素的调整和配比、制定适宜的培养计划有一定的指导意义;4种不同的内源激素都是愈伤组织生长的重要因子,各自适宜的浓度和恰当的比例调节着外植体的脱分化和再分化,各种激素协同作用促进细胞的生长和分化。  相似文献   

17.
The effectiveness of several abscisic acid (ABA) analogs as palliatives against salt stress in intact citrus plants has been tested in this work. The effect of ABA, 8-methylene ABA, 8-acetylene ABA, ABA methyl ester, 8-methylene ABA methyl ester, and 8-acetylene ABA methyl ester on citrus responses to salt stress was studied on 2-year-old grafted plants. Leaf abscission, chloride accumulation, ethylene production, and net photosynthetic rate were the parameters used to characterize the performance of plants under stress. Data indicate that 8-methylene ABA was the most effective compound in delaying the deleterious effects of high salinity on citrus plants. Its regular application reduced leaf chloride concentration, ethylene production, and leaf abscission. Furthermore, it delayed the depletion of CO2 assimilation under these adverse conditions. Abscisic acid and 8-acetylene ABA also reduced salt-stress induced injuries in citrus, although to a lower extent. Neither ABA methyl ester nor its 8-C modified analogs showed biological activity in these assays.  相似文献   

18.
19.
A field experiment was conducted during the summer of 1988 to test the hypothesis that water deficit affects the abscisic acid (ABA) and indole acetic acid (IAA) concentrations in cotton (Gossypium hirsutum L.) flower buds in ways that predispose young fruits (bolls) that subsequently develop from them to increased abscission rates. Water deficit had little effect on the ABA content of flower buds but increased the ABA content of flowers as much as 66%. Water deficit decreased the concentrations of free and conjugated IAA in flower buds during the first irrigation cycle but increased them during the second cycle. Flowers contained much less IAA than buds. Water deficit slightly increased the conjugated IAA content of flowers but had no effect on the concentration of free IAA in flowers. Because water deficit slightly increased the ABA content but did not decrease the IAA content of flowers, any carry-over effect of water deficit on young boll shedding might have been caused by changes in ABA but not from changes in IAA.  相似文献   

20.
The effects of indole-3-acetic acid (IAA) and p-chlorophenoxyisobutyric acid (PCIB) on rates of abscission layer formation and abscission were investigated. The primary leaves of Phaseolus vulgaris were used as test material. Treatment at the distal end of one petiole of the pair from debladed primary leaves with 1% IAA inhibited the abscission of that petiole and accelerated the abscission of its opposite untreated partner. PCIB applied simultaneously with IAA counteracted the accelerating effect of IAA on the opposite untreated petiole. This influence increased with increasing concentrations of PCIB. Anatomical studies revealed that PCIB, although it counteracted the effect of IAA on the rate of abscission, had no effect on abscission layer formation. In other words abscission layer formation takes place under the influence of the auxin despite the presence of the antiauxin. The centripetal sequence of abscission layer formation was found in all cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号