首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Symbiotic pseudorevertants of Rhizobium meliloti ndv mutants.   总被引:8,自引:4,他引:8       下载免费PDF全文
Nodule development (ndv) mutants of Rhizobium meliloti cannot invade alfalfa to establish a nitrogen-fixing symbiosis and instead induce the formation of small, white, unoccupied nodules on alfalfa roots. Such mutants also fail to produce the unusual cyclic oligosaccharide beta-(1----2)-glucan and show defects in several aspects of vegetative growth and function. Here we show that ndv mutants are severely reduced, although not totally deficient, in the ability to attach to and initiate infection threads on alfalfa seedlings, and we demonstrate that the symbiotic deficiency can be separated from the rest of the mutant phenotype by isolating second-site pseudorevertants. Pseudorevertants selected for restoration of motility, a vegetative property, regained a substantial amount of attachment capability but only slight infection thread initiation and symbiotic ability. Such strains also regained partial tolerance to growth at low osmolarity, even though they did not recover the ability to synthesize periplasmic beta-(1----2)-glucan. Pseudorevertants selected on alfalfa for restoration of symbiosis were unrestored for beta-(1----2)-glucan production or any other vegetative property and regained little or no attachment or infection thread initiation capability. We take these data to indicate that wild-type R. meliloti normally has considerable excess capability for both attachment and infection thread initiation and that the symbiotic block in ndv mutants lies further along the developmental pathway than either of these processes, probably at the level of infection thread extension. Further, the fact that neither type of pseudorevertant recovered the ability to produce periplasmic beta-(1----2)-glucan raises the possibility that this oligosaccharide is not directly required for nodule development.  相似文献   

2.
Nodulation of alfalfa by exoB mutants of Rhizobium meliloti occurred without root hair curling or infection thread formation. nod exoB double mutants had the same nodulation deficiency as single nod mutants. Therefore, all the known nod genes are involved in nodule induction by exoB mutants, which apparently occurs via intercellular invasion.  相似文献   

3.
The periplasmic cyclic beta-(1,2)-glucans of Rhizobium spp. are believed to provide functions during hypoosmotic adaptation and legume nodulation. In Rhizobium meliloti, cyclic beta-(1,2)-glucans are synthesized at highest levels when cells are grown at low osmolarity, and a considerable fraction (> or = 35%) of these glucans may become substituted with phosphoglycerol moieties. Thus far, two chromosomally encoded proteins, NdvA and NdvB, have been shown to function during cyclic beta-(1,2)-glucan biosynthesis; however, the precise roles for these proteins remain unclear. In the present study, we show that R. meliloti mutants lacking up to one-third of the downstream region of ndvB synthesize cyclic beta-(1,2)-glucans similar to those produced by wild-type cells with respect to size and phosphoglycerol substituent profile. In contrast, no phosphoglycerol substituents were detected on the cyclic beta-(1,2)-glucans synthesized by an R. meliloti ndvA mutant.  相似文献   

4.
Interaction of nod and exo Rhizobium meliloti in alfalfa nodulation   总被引:2,自引:0,他引:2  
Among the genes of Rhizobium meliloti SU47 that affect nitrogen-fixing symbiosis with alfalfa are nod genes, in which mutations block nodule induction, and exo genes, in which mutations allow nodule formation but block rhizobial exopolysaccharide production as well as nodule invasion and nitrogen fixation. To investigate whether an exo+ bacterium can "help" (that is, reverse the symbiotic defect of) an exo mutant in trans, we have coinoculated alfalfa with pairs of rhizobia of different genotypes. Coinoculant genotypes were chosen so that the exo+ helper strain was nif while the exo "indicator" strain was nif+, and thus any fixation observed was carried out by the exo coinoculant. We find that a nod exo+ coinoculant can help an exo mutant both to invade nodules and to fix nitrogen. However, a nod+ exo+ coinoculant cannot help an exo mutant: Few exo bacteria are recovered from nodules, some bacteroids differentiate into bizarre aberrant forms, and the nodules fail to fix nitrogen. In a triple coinoculation, the effect of nod+ helper supersedes that of nod helper. Implications of these results for interaction of nod and exo gene products are discussed.  相似文献   

5.
The exo loci of Rhizobium meliloti are necessary for the production of an acidic exopolysaccharide, EPS I, that is needed for alfalfa nodule invasion by strain Rm1021. We have isolated and characterized alkaline phosphatase fusions made with TnphoA in several exo loci of R. meliloti and used these fusions to examine the subcellular localization of exo gene products and the regulation of exo genes in free-living cells and in planta. In the course of this work, we isolated a new exo locus, exoT. We have obtained evidence that several of the exo loci may encode membrane proteins. The activity of TnphoA fusions in several exo loci is increased two- to fivefold in the presence of the regulatory mutations exoR95 and exoS96. While examining the regulation of the exo gens by exoR95 and exoS96, we found that certain classes of exo mutations are lethal in an exoR95 or exoS96 background unless a plasmid complementing the exo mutation is present. This result has possible implications for the role of these exo loci in EPS I biosynthesis. We have developed a method for staining nodules specifically for the alkaline phosphatase activity present in the inducing bacteria and used this method to show that an exoF::TnphoA fusion is expressed mainly in the invasion zone of the nodule.  相似文献   

6.
The acidic exopolysaccharide (EPS I) produced by Rhizobium meliloti during symbiosis with Medicago sativa has been shown to be required for the proper development of nitrogen-fixing nodules. Cloned DNA from the exo region of R. meliloti is shown to stimulate production of the low-molecular-weight form of this exopolysaccharide, and in this report we show that the symbiotic deficiencies of two exo mutants of R. meliloti, the exoA and exoH mutants, can be rescued by the addition of this low-molecular-weight material at the time of inoculation. For exoA and exoH mutants, rescue with a preparation containing low-molecular-weight exopolysaccharide induces the formation of nitrogen-fixing nodules which appear somewhat later and at a reduced efficiency compared with wild-type-induced nodules; however, microscopic analysis of these nodules reveals similar nodule morphology and the presence of large numbers of bacteroids in each.  相似文献   

7.
Succinate dehydrogenase mutant of Rhizobium meliloti.   总被引:5,自引:6,他引:5       下载免费PDF全文
A succinate dehydrogenase mutant strain of Rhizobium meliloti was isolated after nitrosoguanidine mutagenesis. It failed to grow on succinate, glutamate, acetate, pyruvate, or arabinose but grew on glucose, sucrose, fructose, and other carbohydrates. The mutant strain showed delayed nodulation of lucerne plants, and the nodules were white and ineffective. A spontaneous revertant strain of normal growth phenotype induced red and effective nodules.  相似文献   

8.
alpha-Ketoglutarate dehydrogenase mutant of Rhizobium meliloti.   总被引:7,自引:19,他引:7       下载免费PDF全文
A mutant of Rhizobium meliloti selected as unable to grow on L-arabinose also failed to grow on acetate or pyruvate. It grew, but slower than the parental strain, on many other carbon sources. Assay showed it to lack alpha-ketoglutarate dehydrogenase (kgd) activity, and revertants of normal growth phenotype contained the activity again. Other enzymes of the tricarboxylic acid cycle and of the glyoxylate cycle were present in both mutant and parent strains. Enzymes of pyruvate metabolism were also assayed. L-Arabinose degradation in R. meliloti was found to differ from the known pathway in R. japonicum, since the former strain lacked 2-keto-o-deoxy-L-arabonate aldolase but contained alpha-ketoglutarate semialdehyde dehydrogenase; thus, it is likely that R. meliloti has the L-arabinose pathway leading to alpha-ketoglutarate rather than the one to glycolaldehyde and pyruvate. This finding accounts for the L-arabinose negativity of the mutant. Resting cells of the mutant were able to metabolize the three substrates which did not allow growth.  相似文献   

9.
Phosphoglucose isomerase mutant of Rhizobium meliloti.   总被引:2,自引:11,他引:2       下载免费PDF全文
A mutant strain of complex phenotype was selected in Rhizobium meliloti after nitrosoguanidine mutagenesis. It failed to grow on mannitol, sorbitol, fructose, mannose, ribose, arabitol, or xylose, but grew on glucose, maltose, gluconate, L-arabinose, and many other carbohydrates. Assay showed the enzyme lesion to be in phosphoglucose isomerase (pgi), and revertants, which were of normal growth phenotype, contained the enzyme again. Nonpermissive substrates such as fructose and xylose prevented growth on permissive ones such as L-arabinose, and in such situations there was high accumulation of fructose 6-phosphate. The mutant strain had about 20% as much exopolysaccharide as the parent. Nitrogen fixation by whole plants was low and delayed when the mutant strain was the inoculant.  相似文献   

10.
sigma 32, the product of the Escherichia coli rpoH locus, is an alternative RNA polymerase sigma factor utilized to express heat shock genes upon a sudden rise in temperature. E. coli K165 [rpoH165(Am) supC(Ts)] is temperature sensitive for growth and does not induce heat shock protein synthesis. We have isolated a locus from Rhizobium meliloti called suhR that allows E. coli K165 to grow at high temperature and induce heat shock protein synthesis. R. meliloti suhR mutants were viable and symbiotically effective. suhR was found to have no DNA or derived amino acid sequence similarity to the genes of previously sequenced sigma factors or other data base entries, although a helix-turn-helix DNA-binding protein motif is present. suhR did not restore the phenotypic defects of delta rpoH E. coli; suppression of the E. coli K165 phenotype is thus likely to involve E. coli sigma 32. Western immunoblots showed that suhR caused an approximately twofold elevation of sigma 32 levels in K165; RNA blots indicated that rpoH mRNA level and stability were not altered. Stabilization of sigma 32 protein and increased rpoH mRNA translation are thus the most probable mechanisms of suppression.  相似文献   

11.
Rhizobium leguminosarum bv. trifolii produces an acidic exopolysaccharide (EPS) which plays an important role in the development of nitrogen-fixing nodules. Tn5 mutant of R. trifolii 93 defective in EPS production (Exo-) forms ineffective (Fix-) nodules on red clover. This Exo- mutation is complemented by the pARF1368 and pARF25 cosmids isolated from gene bank of Rhizobium trifolii TA1, but the complementation is not correlated with restoration of Fix+ phenotype. Furthermore, these cosmids introduced to wild-type of R. trifolii 24 repress its ability to form nitrogen-fixing nodules. These results might suggest that bacteria with cosmids carrying the exo region form EPS of altered structure. It has been shown by 1H-n.m.r. that exopolysaccharides produced by R. trifolii 93pARF-1368 and 93pARF25 contain less non-carbohydrate residues (acetyl, pyruvyl and 3-hydroxybutanoyl) than the wild type EPS. These data suggest that the biological activity of the exopolysaccharide of R. trifolii depends on the contents of the non-carbohydrate substitutions.  相似文献   

12.
Mutants of Rhizobium meliloti SU47 with defects in the production of the Calcofluor-binding expolysaccharide succinoglycan failed to gain entry into alfalfa root nodules. In order to define better the polysaccharide phenotypes of these exo mutants, we analyzed the periplasmic oligosaccharide cyclic (1-2)-beta-D-glucan and lipopolysaccharide (LPS) in representative mutants. The exoC mutant lacked the glucan and had abnormal LPS which appeared to lack a substantial portion of the O side chain. The exoB mutant had a spectrum of LPS species which differed from those of both the wild-type parental strain and the exoC mutant. The presence of the glucan and normal LPS in the exoA, exoD, exoF, and exoH mutants eliminated defects in these carbohydrates as explanations for the nodule entry defects of these mutants. We also assayed for high- and low-molecular-weight succinoglycans. All of the exo mutants except exoD and exoH completely lacked both forms. For the Calcofluor-dim exoD mutant, the distribution of high- and low-molecular-weight forms depended on the growth medium. The haloless exoH mutant produced high-molecular-weight and only a trace of low-molecular-weight succinoglycan; the succinyl modification was missing, as was expected from the results of previous studies. The implications of these observations with regard to nodule entry are discussed.  相似文献   

13.
Abstract Rhizobium meliloti grows on fructose as sole carbon source. Following nitrosoguanidine mutagenesis, a mutant of R. meliloti M5N1 was isolated as unable to grow on fructose. Enzyme assays with cell-free extracts showed it to lack significative phosphoglucose isomerase activity. Other enzymes were present at low levels. Both fructose and fructose 6-phosphate were accumulated within this mutant. The in vitro inhibition of fructokinase by fructose 6-phosphate was show. Symbiotic properties remained unaffected in the mutant strain.  相似文献   

14.
Nucleotide sequence of Rhizobium meliloti nodulation genes   总被引:39,自引:4,他引:39       下载免费PDF全文
A Rhizobium meliloti DNA region, determining nodulation functions common in different Rhizobium species, has been delimited by directed Tn5 mutagenesis and its nucleotide sequence has been determined. The sequence data indicates three large open reading frames with the same polarity coding for three proteins of 196, 217 and 402 (or 426) amino acid residues, respectively. We suggest the existence of three nod genes on this region, which were designated as nodA, B and C, respectively. Comparison of the R. meliloti nodA, B, C nucleotide and amino acid sequences with those from R. leguminosarum, as reported in the accompanying paper, shows 69-72% homology, clearly demonstrating the high degree of conservation of common nod genes in these Rhizobium species.  相似文献   

15.
Summary Chemotaxis by Rhizobium meliloti strain Ve 26 has been studied and conditions required for chemotaxis have been defined, using the Adler capillary assay technique. Several sugars and amino-acids were shown to be attractants with varying effectiveness for this organism: sugars are weak attractants (except gluconate) and amino-acids are good attractants (except unpolar amino-acids).  相似文献   

16.
17.
The rhizobial production of extracellular polysaccharide (EPS) is generally required for the symbiotic infection of host plants that form nodules with an apical meristem (indeterminate nodules). One exception is Rhizobium meliloti AK631, an exoB mutant of Rm41, which is deficient in EPS production yet infects and fixes nitrogen (i.e., is Fix+) on alfalfa, an indeterminate nodule-forming plant. A mutation of lpsZ in AK631 results in a Fix- strain with altered phage sensitivity, suggesting that a cell surface factor may substitute for EPS in the alfalfa-AK631 symbiosis. Biochemical analyses of the cell-associated polysaccharides of AK631 and Rm5830 (AK631 lpsZ) demonstrated that the lpsZ mutation affected the expression of a surface polysaccharide that is analogous to the group II K polysaccharides of Escherichia coli; the polysaccharide contains 3-deoxy-D-manno-2-octulosonic acid or a derivative thereof in each repeating unit. Rm5830 produced a polysaccharide with altered chromatographic and electrophoretic properties, indicating a difference in the molecular weight range. Similar results were obtained in a study of Rm1021, a wild-type isolate that lacks the lpsZ gene: the introduction of lpsZ into Rm1021 exoB (Rm6903) both suppresses the Fix- phenotype and results in a modified expression of the K polysaccharide. Chromatography and electrophoresis analysis showed that the polysaccharide extracted from Rm6903 lpsZ+ differed from that of Rm6903 in molecular weight range. Importantly, the effect of LpsZ is not structurally specific, as the introduction lpsZ+ into Rhizobium fredii USDA257 also resulted in a molecular weight range change in the structurally distinct K polysaccharide produced by that strain. This evidence suggests that LpsZ has a general effect on the size-specific expression of rhizobial K polysaccharides.  相似文献   

18.
Rhizobium meliloti nod genes are required for the infection of alfalfa. Induction of the nodC gene depends on a chemical signal from alfalfa and on nodD gene expression. By using a nodC-lacZ fusion, we have shown that the induction of the R. meliloti nodC gene and the expression of nodD occur at almost normal levels in other Rhizobium backgrounds and in Agrobacterium tumefaciens, but not in Escherichia coli. Xanthomonas campestris, or Pseudomonas savastanoi. Our results suggest that bacterial genes in addition to nodDABC are required for nod gene response to plant cells. We have found that inducing activity is present in other plant species besides alfalfa. Acetosyringone, the A. tumefaciens vir gene inducer, does not induce nodC.  相似文献   

19.
A double mutant strain (UR3) of Rhizobium meliloti L5-30 was isolated from a phosphoglucose isomerase mutant (UR1) on the basis of its resistance to fructose inhibition when grown on fructose-rich medium. UR3 lacked both phosphoglucose isomerase and fructokinase activity. A mutant strain (UR4) lacking only the fructokinase activity was derived from UR3; it grew on the same carbon sources as the parent strain, but not on fructose, mannitol, or sorbitol. A spontaneous revertant (UR5) of normal growth phenotype contained fructokinase activity. A fructose transport system was found in L5-30, UR4, and UR5 grown in arabinose-fructose minimal medium. No fructose uptake activity was detected when L5-30 and UR5 were grown on arabinose minimal medium, but this activity was present in strain UR4. Free fructose was concentrated intracellularly by UR4 > 200-fold above the external level. A partial transformation of fructose into mannitol and sorbitol was detected by enzymatic analysis of the uptake products. Polyol dehydrogenase activity was detected in UR4 grown in arabinose-fructose minimal medium. The induction pattern of polyol dehydrogenase activities in this strain might be due to slight intracellular fructose accumulation.  相似文献   

20.
Mutations in the two flagellin genes of Rhizobium meliloti.   总被引:2,自引:2,他引:2       下载免费PDF全文
K Bergman  E Nulty    L H Su 《Journal of bacteriology》1991,173(12):3716-3723
The previously cloned DNA fragment which complements the behavioral defects of the che-1 and che-3 mutations of Rhizobium meliloti codes for two nearly identical (93%) flagellin genes. A wild-type copy of one of the two genes (flaA) but not the other (flaB) can complement the mutations. The behavior and flagellar morphology of newly isolated strains carrying insertion and deletion mutations or various combinations of these mutations demonstrated that either gene product alone can form functional flagellar filaments but when both gene products are present they interact in the formation of filaments. Both the nucleic acid sequences of the genes and the deduced amino acid sequences of the proteins from strain Rm1021 showed significant differences from the sequences determined previously for strain RU10406. (E. Pleier and R. Schmitt, J. Bacteriol. 171:1467-1475, 1989). The tandem arrangement of the two genes is stable, although in vitro recombination between them gave rise to a strain with wild-type behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号