首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cyclophilins are conserved cistrans peptidyl-prolyl isomerase that are implicated in protein folding and function as molecular chaperones. The accumulation of Cpr1 protein to menadione in Saccharomyces cerevisiae KNU5377Y suggests a possibility that this protein may participate in the mechanism of stress tolerance. Stress response of S. cerevisiae KNU5377Y cpr1Δ mutant strain was investigated in the presence of menadione (MD). The growth ability of the strain was confirmed in an oxidant-supplemented medium, and a relationship was established between diminishing levels of cell rescue enzymes and MD sensitivity. The results demonstrate the significant effect of CPR1 disruption in the cellular growth rate, cell viability and morphology, and redox state in the presence of MD and suggest the possible role of Cpr1p in acquiring sensitivity to MD and its physiological role in cellular stress tolerance. The in vivo importance of Cpr1p for antioxidant-mediated reactive oxygen species (ROS) neutralization and chaperone-mediated protein folding was confirmed by analyzing the expression changes of a variety of cell rescue proteins in a CPR1-disrupted strain. The cpr1Δ to the exogenous MD showed reduced expression level of antioxidant enzymes, molecular chaperones, and metabolic enzymes such as nicotinamide adenine dinucleotide phosphate (NADPH)- or adenosine triphosphate (ATP)-generating systems. More importantly, it was shown that cpr1Δ mutant caused imbalance in the cellular redox homeostasis and increased ROS levels in the cytosol as well as mitochondria and elevated iron concentrations. As a result of excess ROS production, the cpr1Δ mutant provoked an increase in oxidative damage and a reduction in antioxidant activity and free radical scavenger ability. However, there was no difference in the stress responses between the wild-type and the cpr1Δ mutant strains derived from S. cerevisiae BY4741 as a control strain under the same stress. Unlike BY4741, KNU5377Y Cpr1 protein was decarbonylated during MD stress. Decarbonylation of Cpr1 protein in KNU5377Y strain seems to be caused by a rapid and efficient gene expression program via stress response factors Hsf1, Yap1, and Msn2. Hence, the decarbonylated Cpr1 protein may be critical in cellular redox homeostasis and may be a potential chaperone to menadione.  相似文献   

2.
The peptidyl-prolyl isomerase (PPIase) cyclophilin A (Cpr1p) is conserved from eubacteria to mammals, yet its biological function has resisted elucidation. Unable to identify a phenotype that is suggestive of Cpr1p's function in a cpr1Delta Saccharomyces cerevisiae strain, we screened for CPR1-dependent strains. In all cases, dependence was conferred by mutations in ZPR1, a gene encoding an essential zinc finger protein. CPR1 dependence was suppressed by overexpression of EF1alpha (a translation factor that binds Zpr1p), Cpr6p (another cyclophilin), or Fpr1p (a structurally unrelated PPIase). Suppression by a panel of cyclophilin A mutants correlated with PPIase activity, confirming the relevance of this activity in CPR1-dependent strains. In CPR1(+) cells, wild-type Zpr1p was distributed equally between the nucleus and cytoplasm. In contrast, proteins encoded by CPR1-dependent alleles of ZPR1 accumulated in the nucleus, as did wild-type Zpr1p in cpr1Delta cells. Transport kinetic studies indicated that nuclear export of Zpr1p was defective in cpr1Delta cells, and rescue of this defect correlated with PPIase activity. Our results demonstrate a functional interaction between Cpr1p, Zpr1p, and EF1alpha, a role for Cpr1p in Zpr1p nuclear export, and a biological function for Cpr1p PPIase activity.  相似文献   

3.
The Saccharomyces cerevisiae KNU5377 strain, which was isolated from spoilage in nature, has the ability to convert biomass to alcohol at high temperatures and it can resist against various stresses. In order to understand the defense mechanisms of the KNU5377 strain under menadione (MD) as oxidative stress, we used several techniques for study: peptide mass fingerprinting (PMF) by matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry (MS) followed by two-dimensional (2D) gel electrophoresis, liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS), and surface-enhanced laser desorption ionization-time of flight (SELDI-TOF) technology. Among the 35 proteins identified by MALDI-TOF MS, 19 proteins including Sod1p, Sod2p, Tsa1p, and Ahp1p were induced under stress condition, while 16 proteins were augmented under normal condition. In particular, five proteins, Sod1p, Sod2p, Ahp1p, Rib3p, Yaf9p, and Mnt1p, were induced in only stressed cells. By LC-ESI-MS/MS analysis, 37 proteins were identified in normal cells and 49 proteins were confirmed in the stressed cells. Among the identified proteins, 32 proteins were found in both cells. Five proteins including Ye1047cp and Met6p were only upregulated in the normal cells, whereas 17 proteins including Abp1p and Sam1p were elevated in the stressed cells. It was interesting that highly hypothetical proteins such as Ynl281wp, Ygr279cp, Ypl273wp, Ykl133cp, and Ykr074wp were only expressed in the stressed cells. SELDI-TOF analysis using the SAX2 and WCX2 chips showed that highly multiple-specific protein patterns were reproducibly detected in ranges from 2.9 to 27.0 kDa both under normal and stress conditions. Therefore, induction of antioxidant proteins, hypothetical proteins, and low molecular weight proteins were revealed by different proteomic techniques. These results suggest that comparative analyses using proteomics might contribute to elucidate the defense mechanisms of KNU5377 under MD stress.  相似文献   

4.
In this study, we attempted to characterize the physiological response to oxidative stress by heat shock in Saccharomyces cerevisiae KNU5377 (KNU5377) that ferments at a temperature of 40 degrees C. The KNU5377 strain evidenced a very similar growth rate at 40 degrees C as was recorded under normal conditions. Unlike the laboratory strains of S. cerevisiae, the cell viability of KNU5377 was affected slightly under 2 hours of heat stress conditions at 43 degrees C. KNU5377 evidenced a time-dependent increase in hydroperoxide levels, carbonyl contents, and malondialdehyde (MDA), which increased in the expression of a variety of cell rescue proteins containing Hsp104p, Ssap, Hsp30p, Sod1p, catalase, glutathione reductase, G6PDH, thioredoxin, thioredoxin peroxidase (Tsa1p), Adhp, Aldp, trehalose and glycogen at high temperature. Pma1/2p, Hsp90p and H+-ATPase expression levels were reduced as the result of exposure to heat shock. With regard to cellular fatty acid composition, levels of unsaturated fatty acids (USFAs) were increased significantly at high temperatures (43 degrees C), and this was particularly true of oleic acid (C18:1). The results of this study indicated that oxidative stress as the result of heat shock may induce a more profound stimulation of trehalose, antioxidant enzymes, and heat shock proteins, as well as an increase in the USFAs ratios. This might contribute to cellular protective functions for the maintenance of cellular homeostasis, and may also contribute to membrane fluidity.  相似文献   

5.
6.
Disease resistance (R) proteins, as central regulators of plant immunity, are tightly regulated for effective defense responses and to prevent constitutive defense activation under non-pathogenic conditions. Here we report the identification of an F-box protein CPR1/CPR30 as a negative regulator of an R protein SNC1 likely through SCF (Skp1-cullin-F-box) mediated protein degradation. The cpr1-2 (cpr30-1) loss-of-function mutant has constitutive defense responses, and it interacts synergistically with a gain-of function mutant snc1-1 and a bon1-1 mutant where SNC1 is upregulated. The loss of SNC1 function suppresses the mutant phenotypes of cpr1-2 and cpr1-2 bon1-1, while overexpression of CPR1 rescues mutant phenotypes of both bon1-1 and snc1-1. Furthermore, the amount of SNC1 protein is upregulated in the cpr1-2 mutant and down-regulated when CPR1 is overexpressed. The regulation of SNC1 by CPR1 is dependent on the 26S proteosome as a protease inhibitor MG132 stabilizes SNC1 and reverses the effect of CPR1 on SNC1. Interestingly, CPR1 is induced after infection of both virulent and avirulent pathogens similarly to the other negative defense regulator BON1. Thus, this study reveals a new mechanism in R protein regulation likely through protein degradation and suggests negative regulation as a critical component in fine control of plant immunity.  相似文献   

7.
Cyclophilins are cis-trans-peptidyl-prolyl isomerases that bind to and are inhibited by the immunosuppressant cyclosporin A (CsA). The toxic effects of CsA are mediated by the 18-kDa cyclophilin A protein. A larger cyclophilin of 40 kDa, cyclophilin 40, is a component of Hsp90-steroid receptor complexes and contains two domains, an amino-terminal prolyl isomerase domain and a carboxy-terminal tetratricopeptide repeat (TPR) domain. There are two cyclophilin 40 homologs in the yeast Saccharomyces cerevisiae, encoded by the CPR6 and CPR7 genes. Yeast strains lacking the Cpr7 enzyme are viable but exhibit a slow-growth phenotype. In addition, we show here that cpr7 mutant strains are hypersensitive to the Hsp90 inhibitor geldanamycin. When overexpressed, the TPR domain of Cpr7 alone complements both cpr7 mutant phenotypes, while overexpression of the cyclophilin domain of Cpr7, full-length Cpr6, or human cyclophilin 40 does not. The open reading frame YBR155w, which has moderate identity to the yeast p60 homolog STI1, was isolated as a high-copy-number suppressor of the cpr7 slow-growth phenotype. We show that this Sti1 homolog Cns1 (cyclophilin seven suppressor) is constitutively expressed, essential, and found in protein complexes with both yeast Hsp90 and Cpr7 but not with Cpr6. Cyclosporin A inhibited Cpr7 interactions with Cns1 but not with Hsp90. In summary, our findings identify a novel component of the Hsp90 chaperone complex that shares function with cyclophilin 40 and provide evidence that there are functional differences between two conserved sets of Hsp90 binding proteins in yeast.  相似文献   

8.
9.
10.
11.
12.
The role of trehalose as cell protector against oxidative stress induced by H(2)O(2) has been studied in Saccharomyces cerevisiae mutants in which the two trehalase genes ATH1 and NTH1 are deleted. The addition of low H(2)O(2) concentrations to proliferating cultures of either strain did not harm cell viability and induced a marked activity to Nth1p, but with no significant level of trehalose accumulation. This pattern was reversed after a more severe H(2)O(2) treatment that caused drastic cell killing. The most severe phenotype corresponded to the Delta nth1 mutant. Under these conditions, the increase in Nth1p was abolished and a three-fold rise in trehalose content was recorded concomitant with activation of the trehalose synthase complex. The behavior of the double-disruptant Delta ath1Delta nth1 mutant was identical to that of wild-type cells, although in exponential cultures Ath1p activity was virtually undetectable upon exposure to H(2)O(2). Furthermore, these strains displayed an adaptive response to oxidative stress that was independent of intracellular trehalose synthesis. Our data strongly suggest that trehalose storage in budding yeasts is not an essential protectant in cell defense against oxidative challenge.  相似文献   

13.
Previously, we reported that the yeast cytoplasmic thiol peroxidase type II isoform (cTPx II), a member of the TSA/AhpC family, showed a very low peroxidase activity when compared with other cytoplasmic yeast isoforms, and that cTPx II mutant (cTPx II Delta) showed a severe growth retardation compared with that of the wild-type cells. To reveal the physiological function of cTPx II in yeast cell growth, we searched for proteins which react with cTPx II. In this study, we identified a novel interaction between cTPx II and CSR1p using the yeast two-hybrid system. CSR1p (SFH2p) has been known to be one member of Sec14 homologous (SFH2) proteins. SFH2p exhibits phosphatidylinositol transfer protein activity. Interestingly, we found that cTPx II selectively bound to SFH2p among the five types of SFH proteins and Sec14p. The interaction required the dimerization of cTPx II. In addition, SFH2p also specifically bound to cTPx II among the yeast thiol peroxidase isoforms. The selective interaction of the dimer form of cTPx II (the oxidized form) with SFH2p was also confirmed by glutathione S-transferase pull-down and immunoprecipitation assays. The growth retardation, clearly reflected by the length of the lag phase, of cTPx II Delta was rescued by deleting SFH2p in the cTPx II Delta strain. The SFH2 Delta strain did not show any growth retardation. In addition, the double mutant showed a higher susceptibility to oxidative stress. This finding provides the first in vivo demonstration of the specific interaction of cTPx II with SFH2p in an oxidative stress-sensitive manner and a novel physiological function of the complex of cTPx II and SFH2p.  相似文献   

14.
A yeast mutant lacking the two major cytosolic sources of NADPH, glucose-6-phosphate dehydrogenase (Zwf1p) and NADP+-specific isocitrate dehydrogenase (Idp2p), has been demonstrated to lose viability when shifted to medium with acetate or oleate as the carbon source. This loss in viability was found to correlate with an accumulation of endogenous oxidative by-products of respiration and peroxisomal beta-oxidation. To assess effects on cellular protein of endogenous versus exogenous oxidative stress, a proteomics approach was used to compare disulfide bond-containing proteins in the idp2Deltazwf1Delta strain following shifts to acetate and oleate media with those in the parental strain following similar shifts to media containing hydrogen peroxide. Among prominent disulfide bond-containing proteins were several with known antioxidant functions. These and several other proteins were detected as multiple electrophoretic isoforms, with some isoforms containing disulfide bonds under all conditions and other isoforms exhibiting a redox-sensitive content of disulfide bonds, i.e., in the idp2Deltazwf1Delta strain and in the hydrogen peroxide-challenged parental strain. The disulfide bond content of some isoforms of these proteins was also elevated in the parental strain grown on glucose, possibly suggesting a redirection of NADPH reducing equivalents to support rapid growth. Further examination of protein carbonylation in the idp2Deltazwf1Delta strain shifted to oleate medium also led to identification of common and unique protein targets of endogenous oxidative stress.  相似文献   

15.
Fungicidal activity of Hst 5 is initiated by binding to cell surface proteins on Candida albicans, followed by intracellular transport to cytoplasmic effectors leading to cell death. As we identified heat shock 70 proteins (Ssa1p and/or Ssa2p) from C. albicans lysates that bind Hst 5, direct interactions between purified recombinant Ssa proteins and Hst 5 were tested by pull-down and yeast two-hybrid assays. Pulldown of both native complexes and those stabilized by cross-linking demonstrated higher affinity of Hst 5 for Ssa2p than for Ssa1p, in agreement with higher levels of interactions between Ssa2p and Hst 5 measured by yeast two-hybrid analyses. C. albicans ssa1Delta and ssa2Delta mutants were constructed to examine Hst 5 binding, translocation, and candidacidal activities. Both ssa1Delta and ssa2Delta mutants were indistinguishable from wild-type cells in growth and hyphal formation. However, C. albicans ssa2Delta mutants were highly resistant to the candidacidal activity of Hst 5, although the ssa1Delta mutant did not have any significant reduction in killing by Hst 5. Total cellular binding of 125I-Hst 5 in the ssa2Delta mutant was reduced to one-third that of wild-type cells, in contrast to the ssa1Delta mutant whose total cellular binding of Hst 5 was similar to the wild-type strain. Intracellular transport of Hst 5 was significantly impaired in the ssa2Delta mutant strain, but only mildly so in the ssa1Delta mutant. Thus, C. albicans Ssa2p facilitates fungicidal activity of Hst 5 in binding and intracellular translocation, whereas Ssa1p appears to have a lesser functional role in Hst 5 toxicity.  相似文献   

16.
The constitutive expressor of pathogenesis-related genes 5 (CPR5) plays a role in pathogen defence responses, programmed cell death, cell wall biogenesis, seed generation and senescence regulation in plants. Here, we investigated the functional characteristics of CPR5 to long-term heat stress in Arabidopsis with different genotypes: wild type (WT), cpr5 mutant and cpr5/CPR5 complementary transgenic plant. The cpr5 mutant showed increased susceptibility to long-term heat stress, displaying significant decreases in hypocotyl elongation, seedling and inflorescence survival, membrane integrity and photosystem II activity (Fv/Fm) during heat stress. However, the thermotolerance was recovered when cpr5 mutant was transformed with a CPR5 gene. H2O2 accumulation and lipid peroxidation were lower in cpr5/CPR5 plants and WT than in cpr5 mutants after exposure to 36?°C for 5?days. The alleviated oxidative damage was associated with increased activities of superoxide dismutase, catalase, and ascorbate peroxidase. Furthermore, the induced expression of HSP17.6A-CI, HSP101 and HSP70B under long-term heat stress was more substantial in cpr5/CPR5 plants and WT than in cpr5 mutants. These findings suggest that CPR5 plays an important role in thermotolerance of Arabidopsis by regulating the activities of antioxidant enzymes and the expressions of heat shock protein genes.  相似文献   

17.
In a screen for temperature-sensitive (37 degrees C) mutants of Saccharomyces cerevisiae that are defective in the proper localization of the Golgi transmembrane protein Emp47p, we uncovered a constitutive loss-of-function mutation in CYS3/STR1, the gene coding for cystathionine-gamma-lyase. We showed by immunofluorescence, sucrose-gradient analysis and quantitative Western analysis that the mutant mislocalized Emp47p to the vacuole at high temperature, while Golgi structures were apparently normal and biosynthetic routing of the vacuolar carboxypeptidase Y (CPY) and the plasma membrane GPI-anchored protein Gas1p were unaffected. The effect of high temperature on Emp47p localization, as well as the temperature sensitivity of the mutant strain on rich medium, appear to be caused by oxidative stress and are correlated with severe reductions in the intracellular levels of low-molecular-weight thiols. In accordance with this conclusion, cys3-2 mutant cells were more sensitive to the oxidizing agent 1-chloro-2,4-dinitrobenzene, which also aggravated the mislocalization of Emp47p observed at high temperature. Furthermore, all the phenotypes of the mutant were completely complemented by exogenous supply of the main low-molecular-weight thiol, glutathione (GSH) and, importantly, the thiol beta-mercaptoethanol reversed the temperature sensitivity of the mutant. A comparison of our mutant with a mutant defective in GSH synthesis showed that gsh1Delta cells were similar to wild-type cells under the stress conditions tested, with the exception of one novel oxidative stress-related phenotype that is observed in both cys3-2 and gsh1Delta mutant cells - a defect in CDP-DAG metabolism upon shift to the non-permissive temperature. As most of the stress-related phenotypes of cys3-2 mutant cells are more severe than those seen in gsh1Delta cells, we conclude that cysteine as such is required and sufficient to confer some degree of protection from oxidative stress in yeast cells.  相似文献   

18.
Plants often respond to pathogens by sacrificing cells at the infection site. This type of programmed cell death is mimicked by the constitutive pathogene response5 (cpr5) mutant in Arabidopsis in the absence of pathogens, suggesting a role for CPR5 in programmed cell death control. The analysis of the cellular phenotypes of two T-DNA-tagged cpr5 alleles revealed an additional role for CPR5 in the regulation of endoreduplication and cell division. In cpr5 mutant trichomes, endoreduplication cycles stop after two rounds instead of four, and trichome cells have fewer branches than normal. Eventually, cpr5 trichomes die, the nucleus disintegrates, and the cell collapses. Similarly, leaf growth stops earlier than in wild-type, and, frequently, regions displaying spontaneous cell death are observed. The cloning of the CPR5 gene revealed a novel putative transmembrane protein with a cytosolic domain containing a nuclear-targeting sequence. The dual role of CPR5 in cell proliferation and cell death control suggests a regulatory link between these two processes.  相似文献   

19.
20.
We screened the genome of Saccharomyces cerevisiae for the genes responsive to oxidative stress by using the lacZ transposon-insertion library. As a result, we found that expression of the DOG2 gene coding for 2-deoxyglucose-6-phosphate phosphatase was induced by oxidative stress. The expression of DOG2 was also induced by osmotic stress. We found a putative cis element (STRE, a stress response element) in the DOG2 promoter adjacent to a consensus sequence to which the Mig1p repressor is known to bind. The basal levels of DOG2 gene expression were increased in a mig1Delta mutant, while the derepression of DOG2 was not observed in a snf1Delta mutant under glucose-deprived conditions. Induction of the DOG2 gene expression by osmotic stress was observed in any of the three disruptants pbs2Delta, hog1Delta, and snf1Delta. However, the osmotic induction was completely abolished in both the snf1Delta pbs2Delta mutant and the snf1Delta hog1Delta mutant. Additionally, these single mutants as well as double mutants failed to induce DOG2 expression by oxidative stress. These results suggest that Snf1p kinase and the high-osmolarity glycerol-mitogen-activated protein kinase cascade are likely to be involved in the signaling pathway of oxidative stress and osmotic stress in regulation of DOG2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号