首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: Gene regB of bacteriophage T4 encodes a sequence-specific endoribonuclease which introduces cuts in early phage messenger RNAs. In most cases, cutting takes place in the middle of the tetranucleotide GGAG. Efficient cleavages occur in the motifs located in intergenic regions, some of them being Shine-Dalgarno sequences. When located in a coding sequence, this tetranucleotide is poorly recognized or not at all. In this article, we have reviewed the properties of the RegB endoribonuclease, with emphasis on its possible roles in T4 development. We show that the nuclease RegB plays at least two roles: (i) it inactivates a sub-class of early mRNA by cleaving Shine-Dalgarno sequences, and (ii) it is necessary for the degradationn of early mRNAs, but not of middle and late mRNAs. Accordingly, we found that middle and late mRNAs avoid processing by RegB, probably for different reasons. Most of the middle mRNAs (mRNAs initiated at MotA-dependent promoters) do not contain the motif GGAG in their intergenic regions, whereas about one-third of the late genes have this motif as Shine-Dalgarno sequence. It is not yet known whether the RNase is inactivated early in the phage cycle, or whether it remains active but cannot recognize late mRNAs as substrates.  相似文献   

2.
3.
The RegB endoribonuclease participates in the bacteriophage T4 life cycle by favoring early messenger RNA breakdown. RegB specifically cleaves GGAG sequences found in intergenic regions, mainly in translation initiation sites. Its activity is very low but can be enhanced up to 100-fold by the ribosomal 30 S subunit or by ribosomal protein S1. RegB has no significant sequence homology to any known protein. Here we used NMR to solve the structure of RegB and map its interactions with two RNA substrates. We also generated a collection of mutants affected in RegB function. Our results show that, despite the absence of any sequence homology, RegB has structural similarities with two Escherichia coli ribonucleases involved in mRNA inactivation on translating ribosomes: YoeB and RelE. Although these ribonucleases have different catalytic sites, we propose that RegB is a new member of the RelE/YoeB structural and functional family of ribonucleases specialized in mRNA inactivation within the ribosome.  相似文献   

4.
The T4 RegB endoribonuclease cleaves specifically in the middle of the -GGAG- sequence, leading to inactivation and degradation of early phage mRNAs. In vitro, RegB activity is very weak but can be enhanced 10- to 100-fold by the Escherichia coli ribosomal protein S1. Not all RNAs carrying the GGAG motif are cleaved by RegB, suggesting that additional information is required to obtain a complete RegB target site. In this work, we find that in the presence of S1, the RegB target site is an 11 nt long single-stranded RNA carrying the 100% conserved GGA triplet at the 5′ end and a degenerate, A-rich, consensus sequence immediately downstream. Our data support the notion that RegB alone recognizes only the trinucleotide GGA, which it cleaves very inefficiently, and that stimulation of RegB activity by S1 depends on the nucleotide immediately 3′ to -GGA-.  相似文献   

5.
The T4 endoribonuclease RegB is involved in the inactivation of the phage early messengers. It cuts specifically in the middle of GGAG sequences found in early messenger intergenic regions but not GGAG sequences located in coding sequences or in late messengers. In vitro RegB activity is very low but is enhanced by a factor up to 100 by the ribosomal protein S1. In the absence of clear sequence motif distinguishing substrate and non-substrate GGAG-containing RNAs, we postulated the existence of a structural determinant. To test this hypothesis, we correlated the structure, probed by NMR spectroscopy, with the cleavage propensity of short RNA molecules derived from an artificial substrate. A kinetic analysis of the cleavage was performed in the presence and absence of S1. In the absence of S1, RegB efficiently hydrolyses substrates in which the last G of the GGAG motif is located in a short stem between two loops. Both strengthening and weakening of this structure strongly decrease the cleavage rate, indicating that this structure constitutes a positive cleavage determinant. Based on our results and those of others, we speculate that S1 favors the formation of the structure recognized by RegB and can thus be considered a "presentation protein."  相似文献   

6.
Bacteriophage T7 mRNA is polyadenylated   总被引:1,自引:0,他引:1  
  相似文献   

7.
8.
9.
10.
The bacteriophage T4 genome-encoded ribonuclease RegB is the unique well-defined restriction endoribonuclease. This protein cleaves with an almost absolute specificity its RNA substrate in the middle of the GGAG tetranucleotide mainly found in the Shine-Dalgarno sequence (required for the prokaryotic initiation of the translation). This protein has no significant homology to any known ribonuclease and its structure has never been investigated. The extreme toxicity of this ribonuclease prevents the expression of large quantities for structural studies. Here, we show that the toxicity of RegB can be bypassed by using the RegB H48A point mutant and explain why resolving the structure of this mutant is relevant. For nuclear magnetic resonance (NMR) purposes, we report the preparation of highly pure (13)C/(15)N double-labelled 1.2mM samples of RegB H48A using a high yield expression procedure in minimal medium (30 mg/L). We also present a set of solution conditions that maintain the concentrated samples of this protein stable for long periods at the NMR-required temperature. Finally, we present the first (1)H/(15)N and (1)H/(13)C two-dimensional NMR spectra of RegB H48A. These spectra show that the protein is folded and that the full structural analysis of RegB by NMR is feasible.  相似文献   

11.
Inhibition of host protein synthesis after poliovirus infection has been suggested to be a consequence of the proteolytic degradation of a p220 polypeptide necessary to translate capped mRNAs. However, the synthesis of several adenovirus late proteins on capped mRNAs was resistant to poliovirus inhibition. Thus, the hexon protein was still made 8 h after poliovirus superinfection. The synthesis of other adenovirus proteins such as the fiber was much more sensitive to poliovirus-induced inhibition than the hexon, either in the absence or in the presence of guanidine. Detailed densitometric analyses clearly showed the differential behavior of several adenovirus late mRNAs to poliovirus shut-off of translation. This is striking in view of the fact that a common leader sequence in the 5' termini is present in the adenovirus late mRNAs. The use of 3-methyl quercetin, an inhibitor of poliovirus RNA synthesis (Castrillo, J. L., Vanden Berghe, D., and Carrasco, L. (1986) Virology 152, 219-227), showed that translation of several capped adenovirus mRNAs took place in poliovirus-infected cells after the synthesis of host proteins had ceased. The poliovirus mRNA and the adenovirus mRNA coding for the hexon protein are very efficient mRNAs and have a leader sequence of more than 740 and 250 nucleotides, respectively, with very rich secondary structures making it difficult to predict how the scanning model will operate on these two mRNAs.  相似文献   

12.
13.
14.
15.
Translational regulation of SV40 early mRNA defines a new viral protein   总被引:20,自引:0,他引:20  
K Khalili  J Brady  G Khoury 《Cell》1987,48(4):639-645
  相似文献   

16.
Infection of ultraviolet light-irradiated Escherichia coli with T7 phage in the presence of chloramphenicol results in synthesis of T7 early messenger RNA but not late mRNA. T7 early mRNA accumulates in terms of acid-insoluble, T7 DNA-hybridizable RNA. However, messenger activity of the same RNA decays rapidly with a half-life of about 6.5 minutes at 30 °C when tested for the ability to direct in vitro protein synthesis. This functional decay of T7 early mRNA is attributable to a loss of structural integrity of the RNA. Polyacrylamide-agarose gel electrophoresis shows that T7 early mRNAs are cleaved, generating smaller-size RNAs. Kinetics of the appearance of T7-specific RNA polymerase, one of the early gene products, during normal T7 infection show that the capacity of the cells to produce the enzyme decays very rapidly when early mRNA synthesis is terminated either by rifampicin or by a natural mechanism programmed by T7. Preferential synthesis of late proteins in the presence of chemically stable early mRNA late in T7 infection may be explained by the observed functional decay of early mRNA.  相似文献   

17.
18.
Translation initiation is governed by a limited number of mRNA sequence motifs within the translation initiation region (TIR). In bacteria and bacteriophages, one of the most important determinants is a Shine-Dalgarno (SD) sequence that base pairs with the anti-SD sequence GAUCACCUCCUUA localized in the 3′ end of 16S rRNA. This work assesses a diversity of TIR features in phage T4, focusing on the SD sequence, its spacing to the start codon and relationship to gene expression and essentiality patterns. Analysis shows that GAGG is predominant of all core SD motifs in T4 and its related phages, particularly in early genes. Possible implication of the RegB activity is discussed.  相似文献   

19.
The regB gene, from the bacteriophage T4, codes for an endoribonuclease that controls the expression of a number of phage early genes. The RegB protein cleaves its mRNA substrates with an almost absolute specificity in the middle of the tertranucleotide GGAG, making it a unique well-defined restriction endoribonuclease. This striking protein has no homology to any known RNase and its catalytic mechanism has never been investigated. Here, we show, using 31P nuclear magnetic resonance (NMR), that RegB produces a cyclic 2′,3′-phosphodiester product. In order to determine the residues crucial for its activity, we prepared all the histidine-to- alanine point mutants of RegB. The activity of these mutants was characterized both in vivo and in vitro. In addition, their binding capability was quantified by surface plasmon resonance and their structural integrity was probed by 1H/15N NMR correlation spectroscopy. The results obtained show that only the H48A and the H68A substitutions significantly reduce RegB activity without changing its ability to bind the substrate or affecting its overall structure. Altogether, our results define RegB as a new cyclizing RNase and present His48 and His68 as potent catalytic residues. The effect of the in vivo selected R52L mutation is also described and discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号