首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rkp1/Cpc2, a fission yeast RACK1 homolog, interacts with Pck2, a PKC homolog, and is involved in the regulation of pck2-mediated signaling process. The N-terminal region of split pleckstrin homology domain (nPH) in human PLC-gamma1 bound to Rkp1/Cpc2 concomitantly with Pck2. nPH inhibited kinase activity of GST-Pck2 purified from Schizosaccharomyces pombe in vitro. The lethality induced by pck2(+) overexpression was suppressed by coexpression of either rkp1(+) or nPH domain. This result suggests that Rkp1/Cpc2 interacts with PH domain-containing protein and regulates the Pck2-mediated signaling process in S. pombe.  相似文献   

2.
3.
In the fission yeast Schizosaccharomyces pombe, Wee1-dependent inhibitory phosphorylation of the highly conserved Cdc2/Cdk1 kinase determines the mitotic onset when cells have reached a defined size. The receptor of activated C kinase (RACK1) is a scaffolding protein strongly conserved among eukaryotes which binds to other proteins to regulate multiple processes in mammalian cells, including the modulation of cell cycle progression during G(1)/S transition. We have recently described that Cpc2, the fission yeast ortholog to RACK1, controls from the ribosome the activation of MAPK cascades and the cellular defense against oxidative stress by positively regulating the translation of specific genes whose products participate in the above processes. Intriguingly, mutants lacking Cpc2 display an increased cell size at division, suggesting the existence of a specific cell cycle defect at the G(2)/M transition. In this work we show that protein levels of Wee1 mitotic inhibitor are increased in cells devoid of Cpc2, whereas the levels of Cdr2, a Wee1 inhibitor, are down-regulated in the above mutant. On the contrary, the kinetics of G(1)/S transition was virtually identical both in control and Cpc2-less strains. Thus, our results suggest that in fission yeast Cpc2/RACK1 positively regulates from the ribosome the mitotic onset by modulating both the protein levels and the activity of Wee1. This novel mechanism of translational control of cell cycle progression might be conserved in higher eukaryotes.  相似文献   

4.
The Schizosaccharomyces pombe ran1/pat1 gene regulates the transition between mitosis and meiosis. Inactivation of Ran1 (Pat1) kinase is necessary and sufficient for cells to exit the cell cycle and undergo meiosis. The yeast two-hybrid interaction trap was used to identify protein partners for Ran1/Pat1. Here we report the identification of one of these, Cpc2. Cpc2 encodes a homologue of RACK1, a WD protein with homology to the beta subunit of heterotrimeric G proteins. RACK1 is a highly conserved protein, although its function remains undefined. In mammalian cells, RACK1 physically associates with some signal transduction proteins, including Src and protein kinase C. Fission yeast cells containing a cpc2 null allele are viable but cell cycle delayed. cpc2Delta cells fail to accumulate in G(1) when starved of nitrogen. This leads to defects in conjugation and meiosis. Copurification studies show that although Cpc2 and Ran1 (Pat1) physically associate, Cpc2 does not alter Ran1 (Pat1) kinase activity in vitro. Using a Ran1 (Pat1) fusion to green fluorescent protein, we show that localization of the kinase is impaired in cpc2Delta cells. Thus, in parallel with the proposed role of RACK1 in mammalian cells, fission yeast cpc2 may function as an anchoring protein for Ran1 (Pat1) kinase. All defects associated with loss of cpc2 are reversed in cells expressing mammalian RACK1, demonstrating that the fission yeast and mammalian gene products are indeed functional homologues.  相似文献   

5.
6.
The detection and amplification of extracellular signals requires the involvement of multiple protein components. In mammalian cells the receptor of activated C kinase (RACK1) is an important scaffolding protein for signal transduction networks. Further, it also performs a critical function in regulating the cell cycle by modulating the G1/S transition. Many eukaryotic cells express RACK1 orthologs, with one example being Cpc2p in the fission yeast Schizosaccharomyces pombe. In contrast to RACK1, Cpc2p has been described to positively regulate, at the ribosomal level, cells entry into M phase. In addition, Cpc2p controls the stress response pathways through an interaction with Msa2p, and sexual development by modulating Ran1p/Pat1p. Here we describe investigations into the role, which Cpc2p performs in controlling the G protein-mediated mating response pathway. Despite structural similarity to Gβ-like subunits, Cpc2p appears not to function at the G protein level. However, upon pheromone stimulation, cells overexpressing Cpc2p display substantial cell morphology defects, disorientation of septum formation and a significantly protracted G1 arrest. Cpc2p has the potential to function at multiple positions within the pheromone response pathway. We provide a mechanistic interpretation of this novel data by linking Cpc2p function, during the mating response, with its previous described interactions with Ran1p/Pat1p. We suggest that overexpressing Cpc2p prolongs the stimulated state of pheromone-induced cells by increasing ste11 gene expression. These data indicate that Cpc2p regulates the pheromone-induced cell cycle arrest in fission yeast by delaying cells entry into S phase.  相似文献   

7.
The sexual differentiation of Schizosaccharomyces pombe is controlled by many cellular components which have not been fully characterized. We isolated a gene called msa2 as a multi-copy suppressor of a sporulation abnormal mutant (sam1). Msa2p is identical with Nrd1p which has been characterized as a factor that blocks the onset of sexual differentiation. The yeast two-hybrid system was used to identify Cpc2p, a fission yeast homolog of the RACK1 protein, that interacted with Msa2p/Nrd1p. We confirmed that Msa2p/Nrd1p interacted with Cpc2p in S. pombe cells. An epistatic analysis of msa2/nrd1 and cpc2 suggests that Msa2p/Nrd1p was an upstream regulator for Cpc2p. A localization analysis of Cpc2p and Msa2p/Nrd1p indicates that both proteins were predominantly localized in the cytoplasm. The interaction of negative regulator Msa2p/Nrd1p with positive regulator Cpc2p suggests a new regulatory circuit in the sexual differentiation of S. pombe.  相似文献   

8.
General amino acid control (GAAC) is crucial for sensing and adaptation to nutrient availability. Amino acid starvation activates protein kinase Gcn2, which plays a central role in the GAAC response by phosphorylating the α-subunit of eukaryotic initiation factor 2 (eIF2α), leading to the translational switch to stimulate selective expression of stress-responsive genes. We report here that in fission yeast Schizosaccharomyces pombe, Cpc2, a homolog of mammalian receptor for activated C-kinase (RACK1), is important for the GAAC response. Deletion of S. pombe cpc2 impairs the amino acid starvation-induced phosphorylation of eIF2α and the expression of amino acid biosynthesis genes, thereby rendering cells severely sensitive to amino acid limitation. Unlike the Saccharomyces cerevisiae Cpc2 ortholog, which normally suppresses the GAAC response, our findings suggest that S. pombe Cpc2 promotes the GAAC response. We also found that S. pombe Cpc2 is required for starvation-induced Gcn2 autophosphorylation, which is essential for Gcn2 function. These results indicate that S. pombe Cpc2 facilitates the GAAC response through the regulation of Gcn2 activation and provide a novel insight for the regulatory function of RACK1 on Gcn2-mediated GAAC response.  相似文献   

9.
10.
In fission yeast protein kinase C homologues (Pck1 and Pck2) are essential for cell morphogenesis. We have isolated mok1(+) in a genetic screen to identify downstream effectors for Pck1/2. mok1(+) is essential for viability and encodes a protein that has several membrane-spanning domains and regions homologous to glucan metabolic enzymes. mok1 mutant shows abnormal cell shape, randomization of F-actin and weak cell wall. Biochemical analysis shows that Mok1 appears to have alpha-glucan synthase activity. Mok1 localization undergoes dramatic alteration during the cell cycle. It localizes to the growing tips in interphase, the medial ring upon mitosis, a double ring before and dense dot during cytokinesis. Double immunofluorescence staining shows that Mok1 exists in close proximity to actin. The subcellular localization of Mok1 is dependent upon the integrity of the F-actin cytoskeleton. Conversely, overexpression of mok1(+) blocks the translocation of cortical actin from one end of the cell to the other. pck2 mutant is synthetically lethal with mok1 mutant, delocalizes Mok1 and shows a lower level of alpha-glucan. These results indicate that Mok1 plays a crucial role in cell morphogenesis interdependently of the actin cytoskeleton and works as one of downstream effectors for Pck1/2.  相似文献   

11.
Schizosaccharomyces pombe rho1(+) and rho2(+) genes are involved in the control of cell morphogenesis, cell integrity, and polarization of the actin cytoskeleton. Although both GTPases interact with each of the two S. pombe protein kinase C homologues, Pck1p and Pck2p, their functions are distinct from each other. It is known that Rho1p regulates (1,3)beta-D-glucan synthesis both directly and through Pck2p. In this paper, we have investigated Rho2p signaling and show that pck2 delta and rho2 delta strains display similar defects with regard to cell wall integrity, indicating that they might be in the same signaling pathway. We also show that Rho2 GTPase regulates the synthesis of alpha-D-glucan, the other main structural polymer of the S. pombe cell wall, primarily through Pck2p. Although overexpression of rho2(+) in wild-type or pck1 delta cells is lethal and causes morphological alterations, actin depolarization, and an increase in alpha-D-glucan biosynthesis, all of these effects are suppressed in a pck2 delta strain. In addition, genetic interactions suggest that Rho2p and Pck2p are important for the regulation of Mok1p, the major (1-3)alpha-D-glucan synthase. Thus, a rho2 delta mutation, like pck2 delta, is synthetically lethal with mok1-664, and the mutant partially fails to localize Mok1p to the growing areas. Moreover, overexpression of mok1(+) in rho2 delta cells causes a lethal phenotype that is completely different from that of mok1(+) overexpression in wild-type cells, and the increase in alpha-glucan is considerably lower. Taken together, all of these results indicate the presence of a signaling pathway regulating alpha-glucan biosynthesis in which the Rho2p GTPase activates Pck2p, and this kinase in turn controls Mok1p.  相似文献   

12.
HiTrap-syndecan-2/p120-GAP and HiTrap-syndecan-2/RACK1 affinity columns were applied to reveal that Src tyrosine kinase was highly expressed in BALB/3T3 cells transfected with plasmids pcDNA3.1-[S-ras(Q(61)K)] of shrimp Penaeus japonicus. Both columns were effective to isolate Src tyrosine kinase. The selective molecular affinity for Src was found to be stronger with HiTrap-syndecan-2/RACK1, as revealed with competitive RACK1 to dislodge Src from HiTrap-syndecan-2/p120-GAP. We thus challenged the syndecan-2/p120-GAP and syndecan-2/RACK1 with GTP-K(B)-Ras(Q(61)K). The reaction between RACK1 and syndecan-2 was sustained in the presence of mutant Ras proteins, but not the reaction between p120-GAP and syndecan-2. In the presence of syndecan-2, GTP-K(B)-Ras(Q(61)K) exhibited sufficient reactivity with p120-GAP to discontinue the reaction between p120-GAP and syndecan-2. But the interference of mutant Ras disappeared when Src tyrosine kinase was introduced to stabilize the syndecan-2/p120-GAP complex. On the other hand, in the absence of syndecan-2, GTP-K(B)-Ras(Q(61)K) was found to react with RACK1. The reaction between GTP-K(B)-Ras(Q(61)K) and RACK1 could provide a mechanism to deprive RACK1 for the organization of syndecan-2/RACK1 complex and to facilitate the formation of syndecan-2/p120-GAP complex, as well as to provide docking sites for Src signaling upon transformation with oncogenic ras.  相似文献   

13.
To isolate and characterize proteins that interact with the unique domain and SH3 and SH2 domains of Src and potentially regulate Src activity, we used the yeast two-hybrid assay to screen a human lung fibroblast cDNA library. We identified RACK1, a receptor for activated C kinase and a homolog of the β subunit of G proteins, as a Src-binding protein. Using GST-Src fusion proteins, we determined that RACK1 binds to the SH2 domain of Src. Coimmunoprecipitation of Src and RACK1 was demonstrated with NIH 3T3 cells. Purified GST-RACK1 inhibited the in vitro kinase activity of Src in a concentration-dependent manner. GST-RACK1 (2 μM) inhibited the activities of purified Src and Lck tyrosine kinases by 40 to 50% but did not inhibit the activities of three serine/threonine kinases that we tested. Tyrosine phosphorylation on many cellular proteins decreased in 293T cells that transiently overexpressed RACK1. Src activity and cell growth rates decreased by 40 to 50% in NIH 3T3 cells that stably overexpressed RACK1. Flow cytometric analyses revealed that RACK1-overexpressing cells do not show an increased rate of necrosis or apoptosis but do spend significantly more time in G0/G1 than do wild-type cells. Prolongation of G0/G1 could account for the increased doubling time of RACK1-overexpressing cells. We suggest that RACK1 exerts its effect on the NIH 3T3 cell cycle in part by inhibiting Src activity.  相似文献   

14.
We examined the role of the actin cytoskeleton in secretion in Saccharomyces cerevisiae with the use of several quantitative assays, including time-lapse video microscopy of cell surface growth in individual living cells. In latrunculin, which depolymerizes filamentous actin, cell surface growth was completely depolarized but still occurred, albeit at a reduced level. Thus, filamentous actin is necessary for polarized secretion but not for secretion per se. Consistent with this conclusion, latrunculin caused vesicles to accumulate at random positions throughout the cell. Cortical actin patches cluster at locations that correlate with sites of polarized secretion. However, we found that actin patch polarization is not necessary for polarized secretion because a mutant, bee1Delta(las17Delta), which completely lacks actin patch polarization, displayed polarized growth. In contrast, a mutant lacking actin cables, tpm1-2 tpm2Delta, had a severe defect in polarized growth. The yeast class V myosin Myo2p is hypothesized to mediate polarized secretion. A mutation in the motor domain of Myo2p, myo2-66, caused growth to be depolarized but with only a partial decrease in the level of overall growth. This effect is similar to that of latrunculin, suggesting that Myo2p interacts with filamentous actin. However, inhibition of Myo2p function by expression of its tail domain completely abolished growth.  相似文献   

15.
16.
Insulin-like growth factor (IGF)-I regulates a mutually exclusive interaction of PP2A and beta1 integrin with the WD repeat scaffolding protein RACK1. This interaction is required for the integration of IGF-I receptor (IGF-IR) and adhesion signaling. Here we investigated the nature of the binding site for PP2A and beta1 integrin in RACK1. A WD7 deletion mutant of RACK1 did not associate with PP2A but retained some interaction with beta1 integrin, whereas a WD6/WD7 mutant lost the ability to bind to both PP2A and beta1 integrin. Using immobilized peptide arrays representing the entire RACK1 protein, we identified a common cluster of amino acids (FAGY) at positions 299-302 within WD7 of RACK1 which were essential for binding of both PP2A and beta1 integrin to RACK1. PP2A showed a higher level of association with a peptide in which Tyr-302 was phosphorylated compared with an unphosphorylated peptide, whereas beta1 integrin binding was not affected by phosphorylation. RACK1 mutants in which either the FAGY cluster or Tyr-302 were mutated to AAAF, or Phe, respectively, did not interact with either PP2A or beta1 integrin. These mutants were unable to rescue the decrease in PP2A activity caused by suppression of RACK1 in MCF-7 cells with small interfering RNA. MCF-7 cells and R+ (IGF-IR-overexpressing fibroblasts) expressing these mutants exhibited decreased proliferation and migration, whereas R- cells (IGF-IR null fibroblasts) were unaffected. Taken together, the data demonstrate that Tyr-302 in RACK1 is required for interaction with PP2A and beta1 integrin, for regulation of PP2A activity, and for IGF-I-mediated cell migration and proliferation.  相似文献   

17.
The latrunculins are architecturally novel marine compounds isolated from the Red Sea sponge Latrunculia magnifica. In vivo, they alter cell shape, disrupt microfilament organization, and inhibit the microfilament-mediated processes of fertilization and early development. In vitro, latrunculin A was recently found to affect the polymerization of pure actin in a manner consistent with the formation of a 1:1 molar complex with G-actin. These in vitro effects as well as previous indications that the latrunculins are more potent than the cytochalasins suggest differences in the in vivo mode of action of the two classes of drugs. To elucidate these differences we have compared the short- and long-term effects of latrunculins on cell shape and actin organization to those of cytochalasin D. Exposure of hamster fibroblast NIL8 cells for 1-3 hr to latrunculin A, latrunculin B, and cytochalasin D causes concentration-dependent changes in cell shape and actin organization. However, the latrunculin-induced changes were strikingly different from those induced by cytochalasin D. Furthermore, while initial effects were manifest with both latrunculin A and cytochalasin D already at concentrations of about 0.03 microgram/ml, latrunculin A caused complete rounding up of all cells at 0.2 microgram/ml, whereas with cytochalasin D maximum contraction was reached at concentrations 10-20 times higher. The short-term effects of latrunculin B were similar to those of latrunculin A although latrunculin B was slightly less potent. All three drugs inhibited cytokinesis in synchronized cells, but their long-term effects were markedly different. NIL8 cells treated with latrunculin A maintained their altered state for extended periods. In contrast, the effects of cytochalasin D progressed with time in culture, and the latrunculin B-induced changes were transient in the continued presence of the drug. These transient effects were found to be due to a gradual inactivation of latrunculin B by serum and were used to compare recovery patterns of cell shape and actin organization in two different cell lines. This comparison showed that the transient effects of latrunculin B were fully reversible for the NIL8 cells and not for the mouse neuroblastoma N1E-115 cells.  相似文献   

18.
Integrin-linked kinase (ILK) is a multidomain protein that plays important roles at cell-extracellular matrix (ECM) adhesion sites. We describe here a new LIM-domain containing protein (termed as PINCH-2) that forms a complex with ILK. PINCH-2 is co-expressed with PINCH-1 (previously known as PINCH), another member of the PINCH protein family, in a variety of human cells. Immunofluorescent staining of cells with PINCH-2-specific antibodies show that PINCH-2 localizes to both cell-ECM contact sites and the nucleus. Deletion of the first LIM (LIM1) domain of PINCH-2 abolished the ability of PINCH-2 to form a complex with ILK. The ILK-binding defective LIM1-deletion mutant, unlike the wild type PINCH-2 or the ILK-binding competent LIM5-deletion mutant, was incapable of localizing to cell-ECM contact sites, suggesting that ILK binding is required for this process. Importantly, the PINCH-2-ILK and PINCH-1-ILK interactions are mutually exclusive. Overexpression of PINCH-2 significantly inhibited the PINCH-1-ILK interaction and reduced cell spreading and migration. These results identify a novel nuclear and focal adhesion protein that associates with ILK and reveals an important role of PINCH-2 in the regulation of the PINCH-1-ILK interaction, cell shape change, and migration.  相似文献   

19.
Elongation of diffusely expanding plant cells is thought to be mainly under the control of cortical microtubules. Drug treatments that disrupt actin microfilaments, however, can reduce elongation and induce radial swelling. To understand how microfilaments assist growth anisotropy, we explored their functional interactions with microtubules by measuring how microtubule disruption affects the sensitivity of cells to microfilament-targeted drugs. We assessed the sensitivity to actin-targeted drugs by measuring the lengths and diameters of expanding roots and by analysing microtubule and microfilament patterns in the temperature-sensitive Arabidopsis thaliana mutant microtubule organization 1 (mor1-1), along with other mutants that constitutively alter microtubule arrays. At the restrictive temperature of mor1-1, root expansion was hypersensitive to the microfilament-disrupting drugs latrunculin B and cytochalasin D, while immunofluorescence microscopy showed that low doses of latrunculin B exacerbated microtubule disruption. Root expansion studies also showed that the botero and spiral1 mutants were hypersensitive to latrunculin B. Hypersensitivity to actin-targeted drugs is a direct consequence of altered microtubule polymer status, demonstrating that cross-talk between microfilaments and microtubules is critical for regulating anisotropic cell expansion.  相似文献   

20.
We used confocal microscopy and in vitro analyses to show that Nicotiana tabacum WLIM1, a LIM domain protein related to animal Cys-rich proteins, is a novel actin binding protein in plants. Green fluorescent protein (GFP)-tagged WLIM1 protein accumulated in the nucleus and cytoplasm of tobacco BY2 cells. It associated predominantly with actin cytoskeleton, as demonstrated by colabeling and treatment with actin-depolymerizing latrunculin B. High-speed cosedimentation assays revealed the ability of WLIM1 to bind directly to actin filaments with high affinity. Fluorescence recovery after photobleaching and fluorescence loss in photobleaching showed a highly dynamic in vivo interaction of WLIM1-GFP with actin filaments. Expression of WLIM1-GFP in BY2 cells significantly delayed depolymerization of the actin cytoskeleton induced by latrunculin B treatment. WLIM1 also stabilized actin filaments in vitro. Importantly, expression of WLIM1-GFP in Nicotiana benthamiana leaves induces significant changes in actin cytoskeleton organization, specifically, fewer and thicker actin bundles than in control cells, suggesting that WLIM1 functions as an actin bundling protein. This hypothesis was confirmed by low-speed cosedimentation assays and direct observation of F-actin bundles that formed in vitro in the presence of WLIM1. Taken together, these data identify WLIM1 as a novel actin binding protein that increases actin cytoskeleton stability by promoting bundling of actin filaments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号