首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
mAtNOS1 is a novel gene recently reported in mammalian cells with functions that are not fully understood. The present study generated human neuroblastoma SHSY cells over- and underexpressing mAtNOS1 and shows that mAtNOS1 is involved in regulating mitochondrial nitric oxide, mitochondrial transmembrane potential, protein tyrosine nitration, cytochrome c release, and apoptosis of those cells.  相似文献   

2.
mAtNOS1 is a novel gene recently reported in mammalian cells with functions that are not fully understood. The present study generated human neuroblastoma SHSY cells over- and underexpressing mAtNOS1 and shows that mAtNOS1 is involved in regulating mitochondrial nitric oxide, mitochondrial transmembrane potential, protein tyrosine nitration, cytochrome c release, and apoptosis of those cells.  相似文献   

3.
Photodynamic therapy (PDT) is a novel and promising cancer treatment which employs a combination of a photosensitizing chemical and visible light to induce apoptosis in cancer cells. Singlet oxygen has been recognized as the main origin of oxidative stress in PDT. However, the precise mechanism of PDT-induced apoptosis is not well characterized, especially the dualistic role of nitric oxide (NO). To dissect the apoptosis pathways triggered by PDT, the intracellular free radicals in MCF-7 cells were investigated by examining a novel photosensitizer 2-butylamino-2-demethoxyhypocrellin B (2-BA-2-DMHB)-mediated PDT. It was found that exposure of the cells to 2-BA-2-DMHB and irradiation resulted in a significant increase of intracellular ROS in minutes, and then followed by cytoplasmic free calcium enhancement, mitochondrial nitric oxide synthase (mtNOS) activation, cytochrome c release, and apoptotic death. Scavengers of singlet oxygen or NO could attenuate PDT-induced cell viability loss, nucleus morphology changes, cytochrome c release, mitochondria swelling, and apo-apoptosis gene p53 and p21 mRNA levels. The results suggested that both ROS and NO played important roles in the apoptosis-induced by PDT.  相似文献   

4.
The purpose of this study was to determine whether expression of tissue transglutaminase (TG2) and caspase-3 proteins in drug-resistant breast carcinoma MCF-7/DOX cells would render these cells selectively susceptible to apoptotic stimuli. Despite high resistance to multidrug resistance (MDR)-related drug, doxorubicin (> or =150-fold), the MCF-7/DOX cells were extremely sensitive to apoptotic stimuli. Thus, calcium ionophore, A23187 (A23187) and the protein kinase C inhibitor staurosporine (STS) each induced rapid and time-dependent apoptosis in MCF-7/DOX cells. The apoptosis induced by either agent was accompanied by caspase-3 activation and other downstream changes that are typical of cells undergoing apoptosis. The alterations upstream of caspase-3 activation, however, such as loss in mitochondrial membrane potential (DeltaPsi), release of cytochrome c, and activation of caspase-8, and caspase-9, were detected only in STS-treated cells. The A12387 failed to induce any of the caspase-3 upstream changes, implying that A23187-induced apoptosis may utilize one or more novel upstream pathways leading to the activation of caspase 3. In summary, these data demonstrate that MCF-7/DOX cells are much more sensitive to apoptotic stimuli than previously thought and that A23187-induced apoptosis may involve some novel, yet unidentified, upstream pathway that leads to the activation of caspase-3 and other downstream events.  相似文献   

5.
Withaferin A (WA), a promising anticancer constituent of Ayurvedic medicinal plant Withania somnifera, inhibits growth of MDA-MB-231 and MCF-7 human breast cancer cells in culture and MDA-MB-231 xenografts in vivo in association with apoptosis induction, but the mechanism of cell death is not fully understood. We now demonstrate, for the first time, that WA-induced apoptosis is mediated by reactive oxygen species (ROS) production due to inhibition of mitochondrial respiration. WA treatment caused ROS production in MDA-MB-231 and MCF-7 cells, but not in a normal human mammary epithelial cell line (HMEC). The HMEC was also resistant to WA-induced apoptosis. WA-mediated ROS production as well as apoptotic histone-associated DNA fragment release into the cytosol was significantly attenuated by ectopic expression of Cu,Zn-superoxide dismutase in both MDA-MB-231 and MCF-7 cells. ROS production resulting from WA exposure was accompanied by inhibition of oxidative phosphorylation and inhibition of complex III activity. Mitochondrial DNA-deficient Rho-0 variants of MDA-MB-231 and MCF-7 cells were resistant to WA-induced ROS production, collapse of mitochondrial membrane potential, and apoptosis compared with respective wild-type cells. WA treatment resulted in activation of Bax and Bak in MDA-MB-231 and MCF-7 cells, and SV40 immortalized embryonic fibroblasts derived from Bax and Bak double knockout mouse were significantly more resistant to WA-induced apoptosis compared with fibroblasts derived from wild-type mouse. In conclusion, the present study provides novel insight into the molecular circuitry of WA-induced apoptosis involving ROS production and activation of Bax/Bak.  相似文献   

6.
Cancer chemopreventive response to D,L-sulforaphane (SFN), a synthetic racemic analogue of broccoli constituent L-sulforaphane, is partly attributable to apoptosis induction, but the mechanism of cell death is not fully understood. The present study demonstrates a critical role for adapter protein p66(Shc) in SFN-induced apoptosis. Immortalized mouse embryonic fibroblasts (MEF) derived from p66(shc) knockout mice were significantly more resistant to SFN-induced apoptosis, collapse of mitochondrial membrane potential, and reactive oxygen species (ROS) production compared with MEF obtained from the wild-type mice. Notably, a spontaneously immortalized and non-tumorigenic human mammary epithelial cell line (MCF-10A) was resistant to SFN-induced ROS production and apoptosis. Stable overexpression of manganese superoxide dismutase in MCF-7 and MDA-MB-231 human breast cancer cells conferred near complete protection against SFN-induced apoptosis and mitochondrial membrane potential collapse. SFN treatment resulted in increased S36 phosphorylation and mitochondrial translocation of p66(shc) in MDA-MB-231 and MCF-7 cells, and SFN-induced apoptosis was significantly attenuated by RNA interference of p66(shc) in both cells. SFN-treated MDA-MB-231 and MCF-7 cells also exhibited a marked decrease in protein level of peptidyl prolyl isomerase (Pin1), which is implicated in mitochondrial translocation of p66(shc) . However, stable overexpression of Pin1 failed to alter proapoptotic response to SFN at least in MCF-7 cells. Finally, SFN-induced S36 phosphorylation of p66(Shc) was mediated by protein kinase Cβ (PKCβ), and pharmacological inhibition of PKCβ significantly inhibited apoptotic cell death resulting from SFN exposure. In conclusion, the present study provides new insight into the mechanism of SFN-induced apoptosis involving PKCβ -mediated S36 phosphorylation of p66(shc).  相似文献   

7.
We present here a novel semi-synthetic cyclic ether fluorinated noscapine analog (CEFNA) that shows potent antiproliferative and anticancer activity in both hormone-responsive (MCF-7) and hormone non-responsive (MDA-MB-231) breast cancer cells. Interestingly, it is also effective against MCF-7/Adr, an adriamycin-resistant variant of MCF-7 cells. Immunofluorescence experiments showed numerous micronuclei, indicative of apoptotic cell death triggered by this novel analog. Mechanistically, CEFNA exerts a strong antimitotic effect as revealed by cell-cycle studies that show a dose-dependent increase in G2/M population preceding a rising sub-G1 population, suggesting apoptosis.  相似文献   

8.
Dryofragin is a phloroglucinol derivative extracted from Dryopteris fragrans (L.) Schott. In this study, the anticancer activity of dryofragin on human breast cancer MCF-7 cells was investigated. Dryofragin inhibited the growth of MCF-7 cells in a time and concentration-dependent manner. The cell viability was measured using MTT assay. After treatment with dryofragin for 72, 48 and 24h, the IC(50) values were 27.26, 37.51 and 76.10μM, respectively. Further analyses of DNA fragmentation and Annexin V-PI double-labeling indicated an induction of apoptosis. Dryofragin-treatment MCF-7 cells had a significantly accumulation of reactive oxygen species (ROS), as well as an increased percentage of cells with mitochondrial membrane potential (MMP) disruption. These phenomena were blocked by pretreatment for 2h of MCF-7 cells with the antioxidant compound N-acetyl-l-cysteine (NAC, 5mM). These results speak for the involvement of a ROS-mediated mitochondria-dependent pathway in dryofragin-induced apoptosis. Western blot results showed that dryofragin inhibited Bcl-2 and induced Bax expression which led to an activation of caspases-9 and -3 in the cytosol, and further cleavage of poly ADP-ribose polymerase (PARP) in the nucleus, then induced cell apoptosis. In conclusion, the present study provides evidence that dryofragin induces apoptosis in human breast cancer MCF-7 cells through a ROS-mediated mitochondrial pathway.  相似文献   

9.
Phytoestrogens are known to prevent tumor induction. But their molecular mechanisms of action are still unknown. This study aimed to examine the effect of apigenin on proliferation and apoptosis in HER2-expressing breast cancer cells. In our experiments, apigenin inhibited the proliferation of MCF-7 vec and MCF-7 HER2 cells. This growth inhibition was accompanied with an increase of sub G(0)/G(1) apoptotic fractions. Overexpression of HER2 did not confer resistance to apigenin in MCF-7 cells. Apigenin-induced extrinsic apoptosis pathway up-regulating the levels of cleaved caspase-8, and inducing the cleavage of poly (ADP-ribose) polymerase, whereas apigenin did not induce apoptosis via intrinsic mitochondrial apoptosis pathway since this compound did not decrease mitochondrial membrane potential maintaining red fluorescence and did not affect the levels of B-cell lymphoma 2 (BCL2) and Bcl-2-associated X protein. Moreover, apigenin reduced the tyrosine phosphorylation of HER2 (phospho-HER2 level) in MCF-7 HER2 cells, and up-regulated the levels of p53, phospho-p53 and p21 in MCF-7 vec and MCF-7 HER2 cells. This suggests that apigenin induces apoptosis through p53-dependent pathway. Apigenin also reduced the expression of phospho-JAK1 and phospho-STAT3 and decreased STAT3-dependent luciferase reporter gene activity in MCF-7 vec and MCF-7 HER2 cells. Apigenin decreased the phosphorylation level of IκBα in the cytosol, and abrogated the nuclear translocation of p65 within the nucleus suggesting that it blocks the activation of NFκB signaling pathway in MCF-7 vec and MCF-7 HER2 cells. Our study indicates that apigenin could be a potential useful compound to prevent or treat HER2-overexpressing breast cancer.  相似文献   

10.
12(S)-Hydroxyeicosatetraenoic acid (12-HETE) is one of the metabolites of arachidonic acid involved in pathological conditions associated with mitochondria and oxidative stress. The present study tested effects of 12-HETE on mitochondrial functions. In isolated rat heart mitochondria, 12-HETE increases intramitochondrial ionized calcium concentration that stimulates mitochondrial nitric oxide (NO) synthase (mtNOS) activity. mtNOS-derived NO causes mitochondrial dysfunctions by decreasing mitochondrial respiration and transmembrane potential. mtNOS-derived NO also produces peroxynitrite that induces release of cytochrome c and stimulates aggregation of mitochondria. Similarly, in HL-1 cardiac myocytes, 12-HETE increases intramitochondrial calcium and mitochondrial NO, and induces apoptosis. The present study suggests a novel mechanism for 12-HETE toxicity.  相似文献   

11.
The surfactin can inhibit proliferation and induce apoptosis in cancer cells. Moreover, surfactin can induce cell death in human breast cancer MCF-7 cells through mitochondrial pathway. However, the molecular mechanism involved in this pathway remains to be elucidated. Here, the reactive oxygen species (ROS) and Ca(2+) on mitochondria permeability transition pore (MPTP) activity, and MCF-7 cell apoptosis which induced by surfactin were investigated. It is found that surfactin evoked mitochondrial ROS generation, and the surfactin-induced cell death was prevented by N-acetylcysteine (NAC, an inhibitor of ROS). An increasing cytoplasmic Ca(2+) concentration was detected in surfactin-induced MCF-7 apoptosis, which was inhibited by 1,2-bis (2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid (BAPTA-AM, a chelator of calcium). In addition, the relationship between ROS generation and the increase of cytoplasm Ca(2+) was determined. The results showed that surfactin initially induced the ROS formation, leading to the MPTP opening accompanied with the collapse of mitochondrial membrane potential (ΔΨ(m)). Then the cytoplasmic Ca(2+) concentration increased in virtue of the changes of mitochondrial permeability, which was prevented by BAPTA-AM. Besides, cytochrome c (cyt c) was released from mitochondria to cytoplasm through the MPTP and activated caspase-9, eventually induced apoptosis. In summary, surfactin has notable anti-tumor effect on MCF-7 cells, however, there was no obvious cytotoxicity on normal cells.  相似文献   

12.
Effector caspases-3, -6 and -7 are responsible for producing the morphological features associated with apoptosis, such as DNA fragmentation. The present study demonstrates that a member of a novel series of pyrrolo-1,5-benzoxazepines, PBOX-6, induces apoptosis in MCF-7 cells, which lack caspase-3. Apoptosis was accompanied by DNA fragmentation and the activation of caspase-7, but not caspases-3 and -6. Inhibition of caspase-7 activity reduced the extent of apoptosis induced, indicating that activation of caspase-7 is involved in the mechanism by which PBOX-6 induces apoptosis in MCF-7 cells. This study suggests that caspase-3 is not necessarily essential for DNA fragmentation and the morphological changes associated with apoptosis.  相似文献   

13.
目的:探讨去氢木香内酯对乳腺癌MCF-7细胞凋亡、线粒体跨膜电位及代谢物的影响,为研究去氢木香内酯诱导MCF-7细胞凋亡的作用机制提供新的视角。方法:采用流式细胞仪测定不同浓度去氢木香内酯(0、2、4、8μg/m L)对MCF-7细胞凋亡及线粒体跨膜电位的影响;GC-TOFMS测定去氢木香内酯作用前后,MCF-7细胞内具有显著性变化的代谢差异物。结果:研究结果表明,去氢木香内酯能诱导MCF-7细胞的凋亡、促进线粒体跨膜电位的降低;正交偏最小二乘法判别分析(OPLS-DA)多维统计方法对代谢组学数据分析得到柠檬酸、D-核糖、脯氨酸、苯丙氨酸、赖氨酸等16种代谢差异物。结论:推测去氢木香内酯通过引起线粒体跨膜电位降低而破坏了线粒体的结构,进一步阻碍了线粒体的功能,导致了细胞内代谢物的紊乱,最终诱导了细胞的凋亡。  相似文献   

14.
The surfactin can inhibit proliferation and induce apoptosis in cancer cells. Moreover, surfactin can induce cell death in human breast cancer MCF-7 cells through mitochondrial pathway. However, the molecular mechanism involved in this pathway remains to be elucidated. Here, the reactive oxygen species (ROS) and Ca2+ on mitochondria permeability transition pore (MPTP) activity, and MCF-7 cell apoptosis which induced by surfactin were investigated. It is found that surfactin evoked mitochondrial ROS generation, and the surfactin-induced cell death was prevented by N-acetylcysteine (NAC, an inhibitor of ROS). An increasing cytoplasmic Ca2+ concentration was detected in surfactin-induced MCF-7 apoptosis, which was inhibited by 1,2-bis (2-aminophenoxy) ethane-N,N,N′,N′-tetraacetic acid (BAPTA-AM, a chelator of calcium). In addition, the relationship between ROS generation and the increase of cytoplasm Ca2+ was determined. The results showed that surfactin initially induced the ROS formation, leading to the MPTP opening accompanied with the collapse of mitochondrial membrane potential (ΔΨm). Then the cytoplasmic Ca2+ concentration increased in virtue of the changes of mitochondrial permeability, which was prevented by BAPTA-AM. Besides, cytochrome c (cyt c) was released from mitochondria to cytoplasm through the MPTP and activated caspase-9, eventually induced apoptosis. In summary, surfactin has notable anti-tumor effect on MCF-7 cells, however, there was no obvious cytotoxicity on normal cells.  相似文献   

15.
Vitamin D(3) compounds are currently in clinical trials for human breast cancer and offer an alternative approach to anti-hormonal therapies for this disease. 1alpha,25-Dihydroxyvitamin D(3) (1alpha,25(OH)(2)D(3)), the active form of vitamin D(3), induces apoptosis in breast cancer cells and tumors, but the underlying mechanisms are poorly characterized. In these studies, we focused on the role of caspase activation and mitochondrial disruption in 1alpha,25(OH)(2)D(3)-mediated apoptosis in breast cancer cells (MCF-7) in vitro. The effect of 1alpha,25(OH)(2)D(3) on MCF-7 cells was compared with that of tumor necrosis factor alpha, which induces apoptosis via a caspase-dependent pathway. Our major findings are that 1alpha,25(OH)(2)D(3) induces apoptosis in MCF-7 cells by disruption of mitochondrial function, which is associated with Bax translocation to mitochondria, cytochrome c release, and production of reactive oxygen species. Moreover, we show that Bax translocation and mitochondrial disruption do not occur after 1alpha,25(OH)(2)D(3) treatment of a MCF-7 cell clone selected for resistance to 1alpha,25(OH)(2)D(3)-mediated apoptosis. These mitochondrial effects of 1alpha,25(OH)(2)D(3) do not require caspase activation, since they are not blocked by the cell-permeable caspase inhibitor z-Val-Ala-Asp-fluoromethylketone. Although caspase inhibition blocks 1alpha,25(OH)(2)D(3)-mediated events downstream of mitochondria such as poly(ADP-ribose) polymerase cleavage, external display of phosphatidylserine, and DNA fragmentation, MCF-7 cells still execute apoptosis in the presence of z-Val-Ala-Asp-fluoromethylketone, indicating that the commitment to 1alpha,25(OH)(2)D(3)-mediated cell death is caspase-independent.  相似文献   

16.
目的:观察桑葚花色苷提取物对人乳腺癌细胞株MDA-MB-453、MDA-MB-231和MCF-7细胞凋亡及线粒体膜电位的影响.方法:利用超声辅助乙醇萃取法提取桑葚花色苷,pH示差法测定提取物花色苷总含量,以50、100和150 mg/mL桑葚花色苷提取物作用三种乳腺癌细胞MDA-MB-231、MDA-MB-453和MCF-7 24h,采用Annexin V/PI双染流式细胞分析法检测细胞凋亡水平变化,JC-1探针染色激光共聚焦扫描显微镜观察MDA-MB-453细胞线粒体膜电位水平变化.结果:凋亡分析结果表明,桑葚花色苷提取物作用后三种乳腺癌细胞凋亡率均升高,显示出促凋亡效应,且具有剂量-效应关系,100和150 mg/mL组凋亡率显著升高(P<0.05).激光共聚焦扫描显微镜检测结果显示,桑葚花色苷提取物作用24h,可使MDA-MB-453细胞线粒体膜电位显著下降,表现为红色/绿色荧光的比值显著降低(P<0.05).结论:桑葚花色苷提取物可显著降低乳腺癌细胞线粒体膜电位,并促发细胞凋亡.  相似文献   

17.
The activation of protein kinase G (PKG) by cyclic guanosine 3,5-monophosphate (cGMP) has become of considerable interest as a novel molecular approach for the induction of apoptosis in cancer cells. The present study was designed to examine the effects of cGMP and PKG on cell growth and apoptosis in the human breast cancer cell lines, MCF-7 and MDA-MB-468. To achieve this, 1-benzyl-3-(5P-hydroxymethyl-2P-furyl) indazole (YC-1), a soluble guanylyl cyclase activator, and 8-bromo-cGMP (8-br-cGMP), a membrane-permeant and phosphodiesterase-resistant analogue of cGMP, were employed in MCF-7 and MDA-MB-468 cells. Then, the role of PKG in the induction of apoptosis was evaluated using KT5823 and Rp-8-pCPT-cGMP as specific inhibitors of PKG. The expression of PKG isoforms in these cell lines was also investigated. KT5823 and Rp-8-pCPT-cGMP significantly attenuated the loss of cell viability caused by YC-1 and 8-br-cGMP in these cells. This study provides direct evidence that the activation of PKG by cGMP induces growth inhibition and apoptosis in MCF-7 and MDA-MB-468 breast cancer cell lines.  相似文献   

18.
Camptothecin derivatives have been widely used for chemotherapy in patients with various cancers, but intrinsic and acquired drug resistance is major drawback to be overcome. In the present study, we demonstrated that simultaneous treatment with camptothecin and valproic acid induced apoptosis of MCF-7 cells, whereas neither agent alone could efficiently induce apoptosis. This induction of apoptosis was associated with loss of the mitochondrial membrane potential and was caspase dependent. Further investigation showed that concurrent treatment modulated the expression of pro-apoptotic and anti-apoptotic genes. Bcl-XL expression was induced in MCF-7 cells treated with camptothecin alone, but not in cells treated simultaneously with camptothecin and valproic acid. Ectopic overexpression of Bcl-XL in MCF-7 cells completely suppressed the induction of apoptosis, even with simultaneous treatment. On the other hand, efficient induction of apoptosis was achieved by treatment with camptothecin and Bcl-XL inactivation (using siRNA or BH3 mimetic). The cytotoxic effect of camptothecin combined with valproic acid was more than additive for MCF-7 cells. Taken together, our results suggest that simultaneous administration of camptothecin and valproic acid might be useful for anticancer therapy.  相似文献   

19.
We have previously shown that protein kinase Cε (PKCε) acts as an antiapoptotic protein and protects breast cancer MCF-7 cells from tumor necrosis factor-α (TNF)-mediated apoptosis. In the present study, we have investigated the mechanism by which PKCε inhibits TNF-induced cell death. Overexpression of wild-type PKCε (WT-PKCε) in MCF-7 cells decreased TNF-induced mitochondrial depolarization. Depletion of Bax by small interfering RNA (siRNA) attenuated TNF-induced cell death. Overexpression of PKCε in MCF-7 cells decreased dimerization of Bax and its translocation to the mitochondria. Knockdown of PKCε using siRNA induced Bax dimerization and mitochondrial translocation. PKCε was coimmunoprecipitated with Bax in MCF-7 cells. These results suggest that PKCε mediates its antiapoptotic effect partly by preventing activation and translocation of Bax to the mitochondria.  相似文献   

20.
Surfactin has been known to inhibit proliferation and induce apoptosis in cancer cells. However, the molecular mechanisms involved in surfactin-induced apoptosis remain poorly understood. The present study was undertaken to elucidate the underlying network of signaling events in surfactin-induced apoptosis of human breast cancer MCF-7 cells. In this study, surfactin caused reactive oxygen species (ROS) generation and the surfactin-induced cell death was prevented by antioxidants N-acetylcysteine (NAC) and catalase, suggesting involvement of ROS generation in surfactin-induced cell death. Surfactin induced a sustained activation of the phosphorylation of ERK1/2 and JNK, but not p38. Moreover, surfactin-induced cell death was reversed by PD98059 (an inhibitor of ERK1/2) and SP600125 (an inhibitor of JNK), but not by SB203580 (an inhibitor of p38). However, the phosphorylation of JNK rather than ERK1/2 activation by surfactin was blocked by NAC/catalase. These results suggest that the action of surfactin on MCF-7 cells was via ERK1/2 and JNK, but not via p38, and the ERK1/2 and JNK activation induce apoptosis through two independent signaling mechanisms. Surfactin triggered the mitochondrial/caspase apoptotic pathway indicated by enhanced Bax-to-Bcl-2 expression ratio, loss of mitochondrial membrane potential, cytochrome c release, and caspase cascade reaction. The NAC and SP600125 blocked these events induced by surfactin. Moreover, the general caspase inhibitor z-VAD-FMK inhibited the caspase-6 activity and exerted the protective effect against the surfactin-induced cell death. Taken together, these findings suggest that the surfactin induces apoptosis through a ROS/JNK-mediated mitochondrial/caspase pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号