首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
2.
Engelman JA  Zhang XL  Lisanti MP 《FEBS letters》1999,448(2-3):221-230
The CA microsatellite repeat marker, D7S522, is located at the center of a approximately 1000 kb smallest common deleted region that is lost in many forms of human cancer. It has been proposed that a putative tumor suppressor gene lies in close proximity to D7S522, within this smallest common deleted region. However, the genes located in proximity to D7S522 have remained elusive. Recently, we identified five independent BAC clones (approximately 100-200 kb) containing D7S522 and the human genes encoding caveolins 1 and 2. Here, we present the detailed organization of the caveolin locus and its relationship to D7S522, as deduced using a shot-gun sequencing approach. We derived two adjacent contigs for a total coverage of approximately 250 kb. Analysis of these contigs reveals that D7S522 is located approximately 67 kb upstream of the caveolin-2 gene and that the caveolin-2 gene is located approximately 19 kb upstream of the caveolin-1 gene, providing for the first time a detailed genetic map of this region. Further sequence analysis reveals many interesting features of the caveolin genes; these include the intron-exon boundaries and several previously unrecognized CA repeats that lie within or in close proximity to the caveolin genes. The first and second exons of both caveolin genes are embedded within CpG islands. These results suggest that regulation of caveolin gene expression may be controlled, in part, by methylation of these CpG regions. In support of this notion, we show here that the CGs in the 5' promoter region of the caveolin-1 gene are functionally methylated in two human breast cancer cell lines (MCF7 and T-47D) that fail to express the caveolin-1 protein. In contrast, the same CGs in cultured normal human mammary epithelial cells (NHMECs) are non-methylated and these cells express high levels of the caveolin-1 protein. Comparison of the human locus with the same locus in the pufferfish Fugu rubripes reveals that the overall organization of the caveolin-1/-2 locus is conserved from pufferfish to man. In conclusion, our current studies provide a systematic basis for diagnostically evaluating the potential deletion, mutation, or methylation of the caveolin genes in a variety of human tumors.  相似文献   

3.
4.
Recent evidence supports the existence of a plasma membrane ER. In many cells, E2 activates signal transduction and cell proliferation, but the steroid inhibits signaling and growth in other cells. These effects may be related to interactions of ER with signal-modulating proteins in the membrane. It is also unclear how ER moves to the membrane. Here, we demonstrate ER in purified vesicles from endothelial cell plasma membranes and colocalization of ERalpha with the caveolae structural coat protein, caveolin-1. In human vascular smooth muscle or MCF-7 (human breast cancer) cell membranes, coimmunoprecipitation shows that ER associates with caveolin-1 and -2. Importantly, E2 rapidly and differentially stimulates ER-caveolin association in vascular smooth muscle cells but inhibits association in MCF-7 cells. E2 also stimulates caveolin-1 and -2 protein synthesis and activates a caveolin-1 promoter/luciferase reporter in smooth muscle cells. However, the steroid inhibits caveolin synthesis in MCF-7 cells. To determine a function for caveolin-ER interaction, we expressed caveolin-1 in MCF-7 cells. This stimulated ER translocation to the plasma membrane and also inhibited E2-induced ERK (MAPK) activation. Both functions required the caveolin-1 scaffolding domain. Depending upon the target cell, membrane ERs differentially associate with caveolin, and E2 differentially modulates the synthesis of this signaling-inhibitory scaffold protein. This may explain the discordant signaling and actions of E2 in various cell types. In addition, caveolin-1 is capable of facilitating ER translocation to the membrane.  相似文献   

5.
Caveolins modulate signaling pathways involved in cardiac development. Caveolin-1 exists in two isoforms: the beta-isoform derivates from an alternative translational start site that creates a protein truncated by 31 amino acids, mainly expressed in endothelial cells, whereas caveolin-3 is present in muscle cells. Our aim was to define caveolin distribution and expression during cardiac postnatal development using immunofluorescence and Western blotting. Caveolin-3 sarcolemmal labeling appeared as dotted lines from days 1 to 5 and as continuous lines after 14 days of age. Caveolin-3 expression, low at birth, increased (4-fold) to reach a maximum (P < 0.05) by day 5 and then decreased to stabilize in adults. Total caveolin-1 and its alpha-isoform were codistributed at birth in endothelial and smooth muscle cells; afterward, only the caveolin-1alpha labeling became limited to endothelium. Quantitative analysis indicated a similar temporal pattern of both total caveolin-1 and caveolin-1alpha expression, suggesting that caveolin-1alpha and -1beta are coregulated; the caveolin-1alpha levels increased fourfold by day 5 to reach a maximum by day 14 (P < 0.05). Tyrosine-14-caveolin-1 phosphorylation, low at birth, increased suddenly around day 14 (8-fold vs. day 1) and returning afterward to basal level. Because the T3/T4 level is maximal by day 14, caveolin-1 expression/phosphorylation profiles were analyzed in hypothyroid heart. The levels of caveolin-1alpha and consequently tyrosine-14-caveolin-1 phosphorylation, but not that of caveolin-3, decreased (50%) in hypothyroid 14-day-old rats. Our data demonstrate that, during postnatal cardiac growth, 1) caveolins are distinctly regulated, and 2) thyroid hormones are involved in caveolin-1alpha expression.  相似文献   

6.
Caveolin--an integral membrane protein--is the principal component of caveolae membranes in vivo. Multiple forms of caveolin have been identified: caveolin-1alpha, caveolin-1beta, caveolin-2 and caveolin-3. They differ in their specific properties and tissue distribution. When we studied the lysate of resident and elicited macrophages isolated from rat peritoneal cavity by Western blot analysis, we identified two different proteins (approximately 29 kDa and approximately 20 kDa) which were labelled with anti-caveolin antibodies. The approximately 20-kDa protein was labelled specifically only by anti-VIP21/caveolin-1, while the approximately 29-kDa protein was labelled by anti-VIP21/caveolin-1 and anti-caveolin-2. The presence of the approximately 29-kDa protein was characteristic of resident macrophages, and only a small amount of the approximately 20-kDa protein was detected in these cells. Elicitation resulted in a significant increase in the amount of the approximately 20-kDa protein labelled by anti-VIP21/caveolin-1 only. According to its molecular mass and antibody-specificity, this protein might be identical with the caveolin-1beta isoform. Our morphological (confocal and electron microscopical) studies have shown that in resident cells caveolin was present in the cytoplasm, in smaller vesicles and multivesicular bodies around the Golgi area. Only a very small amount of caveolae was found on the surface of these cells. In elicited macrophages, caveolae (labelled with the anti-VIP21/caveolin-1 antibody) appeared in large numbers on the cell surface, but caveolin detected by anti-caveolin-2 was also found in small vesicles and multivesicular bodies in the cytoplasm. According to these results, the absence of caveolae in resident cells can be explained by the absence of caveolin-1. The expression of the approximately 29-kDa (caveolin-related) protein in resident macrophages seems to be insufficient for caveolae formation. Elicitation significantly increased the expression of caveolin-1, and the increased amount of caveolin-1 resulted in caveolae formation on the cell surface.  相似文献   

7.
8.
9.
10.
As a signalling molecule of the integral membrane protein family, caveolin participates in cellular signal transduction via interaction with other signalling molecules. The nature of interaction between nitric oxide (NO) and caveolin in the brain, however, remains largely unknown. In this study we investigated the role(s) of NO in regulating caveolin-1 expression in rat ischemic brains with middle cerebral artery occlusion (MCAO). Exposure to 1 h ischemia induced the increases in neuronal nitric oxide synthase (nNOS) and NO concentration with concurrent down-regulation of caveolin-1 expression in the ischemic core of rat brains. Subsequent 24 h or more reperfusion time led to an increase in inducible NOS (iNOS) expression and NO production, as well as a decline of caveolin-1 protein at the core and penumbra of the ischemic brain. Afterwards, NOS inhibitors and an NO donor were utilized to clarify the link between NO production and caveolin-1 expression in the rats with 1 h ischemia plus 24 h reperfusion. N(G)-nitro-l-arginine methyl ester (L-NAME, a non-selective NOS inhibitor), N(6)-(1-iminoethyl)-lysine (NIL, an iNOS inhibitor), and 7-nitroindazole (7-NI, a nNOS inhibitor) prevented the loss of caveolin-1 in the core and penumbra of the ischemic brain, whereas l-N(5)-(1-iminoethyl)-ornithine (L-NIO, an endothelial NOS inhibitor) showed less effect than the other NOS inhibitors. S-Nitroso-N-acetylpenicillamine (SNAP, a NO donor) down-regulated the expression of caveolin-1 protein in normal and ischemic brains. These results, when taken together, suggest that NO modulates the expression of caveolin-1 in the brain and that the loss of caveolin-1 is associated with NO production in the ischemic brain.  相似文献   

11.
Lipid rafts are liquid ordered platforms that dynamically compartmentalize membranes. Caveolins and flotillins constitute a group of proteins that are enriched in these domains. Caveolin-1 has been shown to be an essential component of caveolae. Flotillins were also discovered as an integral component of caveolae and have since been suggested to interact with caveolins. However, flotillins are also expressed in non-caveolae-containing cells such as lymphocytes and neuronal cells. Hence, a discrepancy exists in the literature regarding the caveolin dependence of flotillin expression and their subcellular localization. To address this controversy, we used mouse embryonic fibroblasts (MEFs) from caveolin-1 knockout (Cav-1(-/-)) and wild-type mice to study flotillin expression and localization. Here we show that both membrane association and lipid raft partitioning of flotillins are not perturbed in Cav-1(-/-) MEFs, whereas membrane targeting and raft partitioning of caveolin-2, another caveolin family protein, is severely impaired. Moreover, we demonstrate that flotillin-1, but not flotillin-2, associates with lipid droplets upon oleic acid treatment and that this association is completely independent of caveolin. Taken together, our results show that flotillins are localized in lipid rafts independent of caveolin-1 and that translocation of flotillin-1 to lipid droplets is a caveolin-independent process.  相似文献   

12.
13.
14.
15.
16.
17.
18.
Although both estrogen and caveolin have been implicated in many physiological functions, their precise relationship is not completely understood in mouse embryonic stem (ES) cells. Thus, this study was designed to examine the relationship between estradiol-17beta (E(2)) and caveolin-1 in mouse ES cell proliferation. E(2) increased the expression of caveolin-1 and caveolin-2 mRNA and proteins, but pre-treatment with ICI 182,780 [an estrogen receptor (ER) antagonist] inhibited E(2)-induced increase in caveolin-1 and caveolin-2 proteins expression. E(2) also increased phosphorylated levels of caveolin-1, Src, and Akt. Phospho-caveolin-1 was significantly blocked by ICI 182,780 or pyrazolopyrimidine 2 (PP2; a Src-kinase inhibitor). LY 294002 (a PI3K inhibitor) or PD 98059 (an ERK1/2 inhibitor) prevented E(2)-induced increase in caveolin-1 expression and the accompanying [(3)H]-thymidine incorporation. Furthermore, inhibition of caveolin-1 expression using a caveolin-1 siRNA significantly attenuated E(2)-induced up-regulation of proto-oncogenes, cell cycle regulatory proteins, [(3)H]-thymidine incorporation, overall cell number, and percent of the cell population in S phase, while mediating a concomitant increase in the G0/G1 population. In conclusion, E(2) stimulates mouse ES cell proliferation partially through up-regulating caveolin-1 via the Src, PI3K/Akt, ERK1/2 signaling pathways.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号