首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plant material infiltrated with gradually increasing concentrations of Carbowax 400, followed by Carbowax 1540 and finally a 19:1 embedding mixture of Carbowax 1540 and 4000 showed minimum shrinkage. Quantitative measurements of shrinkage in tissue of potato tubers gave the following amounts: fixation and washing, about 4%; transfer from water directly to 70% Carbowax 400, 5176; from water through a graded series (5, 10, 15, 20, 30, 40, 50 and 60% Carbowax) to 70%, only 2.5% shrinkage; with an additional 1.5% occurring in transition to the embedding mixture. Dry ribbons are placed on adhesive-coated (gelatin, 5 gm; water, 120 ml; glycerol, 40 ml; phenol, 2 gm) slides in a humidity chamber. In 10-15 min enough moisture is absorbed by the ribbon to float the sections out gently and bring them in contact with the adhesive. Slides are then dried 5-10 min at room temperature. To remove minor wrinkles, the sections are subsequently flooded with water, then redried 12-24 hr; after which, they are ready for staining.  相似文献   

2.
Plant material infiltrated with gradually increasing concentrations of Carbowax 400, followed by Carbowax 1540 and finally a 19:1 embedding mixture of Carbowax 1540 and 4000 showed minimum shrinkage. Quantitative measurements of shrinkage in tissue of potato tubers gave the following amounts: fixation and washing, about 4%; transfer from water directly to 70% Carbowax 400, 5176; from water through a graded series (5, 10, 15, 20, 30, 40, 50 and 60% Carbowax) to 70%, only 2.5% shrinkage; with an additional 1.5% occurring in transition to the embedding mixture. Dry ribbons are placed on adhesive-coated (gelatin, 5 gm; water, 120 ml; glycerol, 40 ml; phenol, 2 gm) slides in a humidity chamber. In 10-15 min enough moisture is absorbed by the ribbon to float the sections out gently and bring them in contact with the adhesive. Slides are then dried 5-10 min at room temperature. To remove minor wrinkles, the sections are subsequently flooded with water, then redried 12-24 hr; after which, they are ready for staining.  相似文献   

3.
Glycol methacrylate, while offering certain advantages over paraffin as an embedding medium, is difficult to use because it will not ribbon. Rohde (1965) developed a method for producing ribbons of methacrylate sections, but we had little success with it because the ribbons tended to fall apart when even slight stresses were applied to them. We have therefore made use of the principle of double embedding, as this has been used for obtaining serial sections of material embedded in nitrocellulose.  相似文献   

4.
Glycol methacrylate, while offering certain advantages over paraffin as an embedding medium, is difficult to use because it will not ribbon. Rohde (1965) developed a method for producing ribbons of methacrylate sections, but we had little success with it because the ribbons tended to fall apart when even slight stresses were applied to them. We have therefore made use of the principle of double embedding, as this has been used for obtaining serial sections of material embedded in nitrocellulose.  相似文献   

5.
S Fink 《Stain technology》1987,62(2):93-99
Adhesion of various organic-solvent based adhesives to glass slides could be greatly improved by first priming the slide with a copolymer of allyl methacrylate and methacryloxypropyltrimethoxysilane. The use of different solvents and types of adhesives with these slides is discussed. Cellulose nitrate in different esters of acetic acid proved to be an effective adhesive for varied sections at room temperature and in the cryostat. Carbowax sections as a special case preferably were affixed with polyisobutylene in petroleum ether. Most of the attachments formed resisted even boiling water.  相似文献   

6.
Adhesion of various organic-solvent based adhesives to glass slides could be greatly improved by first priming the slide with a copolymer of allyl methacrylate and methacryloxypropyltrimethoxysilane. The use of different solvents and types of adhesives with these slides is discussed. Cellulose nitrate in different esters of acetic acid proved to be an effective adhesive for varied sections at room temperature and in the cryostat. Carbowax sections as a special case preferably were affixed with polyisobutylene in petroleum ether. Most of the attachments formed resisted even boiling water.  相似文献   

7.
The floating-out technic, popular for single paraffin sections, can be applied successfully to ribbons of serials by either of two procedures. (1) If spreading time for the sections is uncritical suitable lengths of ribbon for attachment to a slide are laid on water at a temperature about 8° C below the melting point of the paraffin and manipulated with a rubber bulb pipette to form a unit. This ensemble can then be picked up by the slide in much the same manner as a single section. (2) If spreading time is critical, as for objects that have had guide limes embedded with them, several ribbons are arranged on a cold, dry slide and transferred to the water as a unit. Placing the ribbons on the cold slide so that they slightly overhang one end and the sides of the slide allows them to make proper contact with the water as the slide is immersed. To facilitate controllable spreading in both methods, the water should have added to it 0.5 ml of albumen-glycerol adhesive per 100 ml. Adding water to the slide after the sections have been picked up or manipulation of the ribbons is generally unnecessary if the ribbons have been aligned accurately on the floating-out bath.  相似文献   

8.
Serial sections of cooked rice kernels may be obtained by following either of two dehydration schedules and embedding in Carbowax. In the first schedule the cooked, rinsed and drained kernels are immersed several days in a nonaqueous fixative composed of: isopropyl alcohol, 10 ml; propionic acid, 30 ml; acetone, 10 ml; methylal, 40 ml; dioxane, 30 ml; and propylene glycol, 30 ml (Newcomer's, modified), followed by 7 or 8 days in equal parts of propylene glycol, dioxane and glycerol (changed once), and 4 days on a warming table in the same mixture with 5% Carbowax added. The dehydrated kernels are then infiltrated 4-24 hr with a Carbowax embedding mixture. In the second schedule they are immersed several days in an aqueous solution consisting of: propylene glycol, 12.5 ml; polyethylene glycol 400, 12.5 ml; either with 75 ml of water containing 0.1% thymol, or with a mixture of water, 65 ml; formalin, 10 ml; CaCl2, 1 gm; and CdCl2, 1 gm; followed by 3 or 4 days in 50% propylene glycol, and 3 or 4 days on a warming table in 80% propylene glycol with 5% Carbowax added. Infiltration is as above. The composition of the embedding mixture is varied according to the temperature and humidity likely to prevail during sectioning. The texture of the wax may be improved by adding small amounts of gum arabic, spermaceti, and glycerol. Serial sections 3-10 μ thick are placed on clean dry slides, and adhesive dropped at the edges of the ribbon of Carbowax until it is dissolved. The adhesive consists of water-glass (concentrated solution), 1 ml; concentrated ammonia, 1 ml; Carbowax, 5 gm; and water, 98 ml. After the slides are dry they are stored, or immersed 10 min in chloroform, collodionized, and passed to staining solutions. Atmospheric conditions affect not only the Carbowax, but also the response to reagents of cooked rice and of sections.  相似文献   

9.
A combined Carbowax-paraffin technic for microsectioning fixed tissues gave ribbon sections as do paraffin infiltrated and embedded tissues. Blocks of formalin or alcohol fixed tissues 2 mm. thick were infiltrated with H.E.M. (Polyethlene Glycol: Carbowax, Hartman-Leddon Co.) or with one of the following polyethylene glycol ester waxes (Glycol Products Co., Inc.) for 4 hours at (61°C.): Polyethylene Glycol 600(Di) Stearate; Carbowax 1000-(Mono) Stearate; Carbowax 4000 (Mono) Stearate; Carbowax 4000 (Mono) Laurate; Carbowax 6000 (Mono) Oleate. The Carbowax infiltrated tissues were placed for 10 minutes in xylene (61° C.), into paraffin (61° C.) for 30 minutes, then into molten paraffin contained in separate molds. (The xylene passage can be excluded for preparations which preclude its use). The blocks were hardened rapidly by submerging in ice water and were fastened to carriers as in the usual paraffin technic. Tissues were cut 6 µ thick. Segments of ribbon were spread on a water bath and mounted on slides. After drying, tissues were stained directly with hematoxylin-eosin or were carried through xylene and alcohols as in routine paraffin preparations prior to staining. The Sudan III fat stain and Best's carmine stain for glycogen were applied as in usual technics. Cellular detail was well preserved and structures did not show the extent of distortion and shrinkage encountered in ordinary paraffin technic preparations.  相似文献   

10.
Methylmethacrylate (MMA) is the most commonly used embedding medium for sectioning undecalcified bone; however, a number of problems exist with its use in a research laboratory. MMA requires a long infiltration time and temperature control, and it reacts with many polymers. We used Kleer Set resin as an alternative embedding medium for sectioning undecalcified bone specimens. Fluorochrome labeled bone specimens were sectioned transversely using a ground section technique and longitudinally on a sledge macrotome. The slides were viewed using both transmitted light and epifluorescence microscopy. High quality sections were obtained using Kleer Set resin for both sectioning techniques. We have shown that this new embedding medium is simpler, safer, quicker to use and does not interfere with visualization of fluorochromes.  相似文献   

11.
S Fink 《Histochemistry》1992,97(3):243-246
A new technique is presented for the external stabilization of cryostat sections by spraying the specimen surfaces with an aqueous solution of poly(vinyl alcohol) before each sectioning stroke. The spray freezes upon the surface and forms a tough coating which facilitates subsequent sectioning and handling especially of difficult material. The sections are affixed upon cold glass slides covered with an improved formulation of pressure-sensitive adhesive. During further processing of the affixed sections, the PVA-coating and any surrounding supporting medium dissolve without traces in the first aqueous incubation or staining solution.  相似文献   

12.
Methylmethacrylate (MMA) is the most commonly used embedding medium for sectioning undecalcified bone; however, a number of problems exist with its use in a research laboratory. MMA requires a long infiltration time and temperature control, and it reacts with many polymers. We used Kleer Set resin™ as an alternative embedding medium for sectioning undecalcified bone specimens. Fluorochrome labeled bone specimens were sectioned transversely using a ground section technique and longitudinally on a sledge macrotome. The slides were viewed using both transmitted light and epifluorescence microscopy. High quality sections were obtained using Kleer Set resin™ for both sectioning techniques. We have shown that this new embedding medium is simpler, safer, quicker to use and does not interfere with visualization of fluorochromes.  相似文献   

13.
Methylmethacrylate (MMA) is the most commonly used embedding medium for sectioning undecalcified bone; however, a number of problems exist with its use in a research laboratory. MMA requires a long infiltration time and temperature control, and it reacts with many polymers. We used Kleer Set resin? as an alternative embedding medium for sectioning undecalcified bone specimens. Fluorochrome labeled bone specimens were sectioned transversely using a ground section technique and longitudinally on a sledge macrotome. The slides were viewed using both transmitted light and epifluorescence microscopy. High quality sections were obtained using Kleer Set resin? for both sectioning techniques. We have shown that this new embedding medium is simpler, safer, quicker to use and does not interfere with visualization of fluorochromes.  相似文献   

14.
Diethylene glycol distearate is used as a removable embedding medium to produce embeddment -free sections for transmission electron microscopy. The easily cut sections of this material float and form ribbons in a water-filled knife trough and exhibit interference colors that aid in the selection of sections of equal thickness. The images obtained with embeddment -free sections are compared with those from the more conventional epoxy-embedded sections, and illustrate that embedding medium can obscure important biological structures, especially protein filament networks. The embeddment -free section methodology is well suited for morphological studies of cytoskeletal preparations obtained by extraction of cells with nonionic detergent in cytoskeletal stabilizing medium. The embeddment -free section also serves to bridge the very different images afforded by embedded sections and unembedded whole mounts.  相似文献   

15.
Summary A new technique is presented for the external stabilization of cryostat sections by spraying the specimen surfaces with an aqueous solution of poly(vinyl alcohol) before each sectioning stroke. The spray freezes upon the surface and forms a tough coating which facilitates subsequent sectioning and handling especially of difficult material. The sections are affixed upon cold glass slides covered with an improved formulation of pressure-sensitive adhesive. During further processing of the affixed sections, the PVA-coating and any surrounding supporting medium dissolve without traces in the first aqueous incubation or staining solution.  相似文献   

16.
Serial sectioning techniques for a modified LKB Historesin   总被引:5,自引:0,他引:5  
A glycol methacrylate-based plastic that is capable of producing serial sections has been introduced by LKB. This plastic, provided in the LKB 2218-500 Historesin Embedding Kit, has been tested in our laboratory for its ribbon forming capacity. Various block sizes, concentrations of the softening agent polyethylene glycol 400 (PEG), and tissue types have been examined to determine the optimal conditions for ribbon formation. Although unmodified LKB Historesin is capable of forming ribbons, these ribbons often break. The addition of PEG to the embedding solution enhances ribbon formation. When sectioning with glass knives the best results are achieved with the addition of 0.2 ml of PEG/5.0 ml of embedding medium. A conventional AO rotary microtome can be used to produce ribbons if, in addition to the added PEG (optimal concentration 0.25-0.30 per 5 ml of embedding medium) a thin layer of dental wax is added to the upper and lower surfaces of the block. Ribbons form more easily on microtomes, such as the LKB Historange, that have a retractable specimen arm. If serial sections are to be produced it is very important that the upper and lower faces of blocks be parallel.  相似文献   

17.
Botanical studies often require thick histological sections (for embryology, pollen and spore arrangement in tetrads, etc.). Study of the original position of the generative cell in Angiosperms, for example (Huynh 1972), requires paraffin sections bearing entire pollen grains with a diameter of up to 80 μm. However, it is impossible to obtain ribbons with sections of such thickness. If the sections are affixed separately, they do not hold so strongly to slides as do those mounted as ribbons; this difficulty increases with thickness of section. in addition, affixing sections separately with the required order and spacing is tedious and difficult, demands a great deal of time, and even so, is not always successful. the simple method described here can remedy such inconveniences.  相似文献   

18.
A simple technique is described for processing optical microscopy sections attached to glass slides for ultramicrotomy in any desired plane. A silicone rubber mold with a central orifice is clamped onto the slide so that the orifice overlies the section. Routine processing and embedding procedures are carried out in the well formed by the orifice.  相似文献   

19.
Polyethylene glycol (PEG) is an excellent embedding medium for immunohistochemical studies. It provides structural preservation superior to frozen sections and increased sensitivity of antigen detection compared with paraffin sections. One limitation of PEG embedment is that PEG sections are difficult to handle and adhere poorly to glass slides. Here we present a simple and effective method for embedding tissues in PEG and transferring the resultant sections onto silanated glass slides. In addition, a method for silver enhanced colloidal gold immunostaining was combined with common dye staining to demonstrate the excellent structure preservation and sensitive antigen detection. Bovine chorionic membrane was fixed with Bouin's fixative, embedded in polyethylene glycol (PEG) 1500, cut into 5-microns sections, flattened over agarose blocks (10 x 10 x 2 mm3), and blotted onto Digene silanated slides. Slides were then washed in PBS, which removed the PEG and agarose blocks. Tissue sections were immunocytochemically stained with dilute antiserum raised in a rabbit against purified bovine placental retinol binding protein (bpRBP). Sections were washed and incubated with 1-nm colloidal gold-labeled goat anti-rabbit IgG. The immunogold particles were enhanced by silver staining (IGSS). Specimens were observed and photographed with an Olympus epipolarization microscope. The new method offered excellent morphological preservation of cell structure and the epipolarization microscopy provided high sensitivity for detection of specific immunogold-silver particles.  相似文献   

20.
Scanning electron microscopy (SEM) was applied to paraffin-embedded wood sections to study the histopathology of pine seedlings inoculated with the pinewood nematode (PWN), Bursaphelenchus xylophilus. The sections, which had been previously prepared and observed by light microscopy (LM) on glass slides, were originally obtained from experiments in which pine seedlings had been inoculated with PWN. The cover glass was removed by soaking the glass slide in xylene for 3 to 5 days. The glass slides were cut into small pieces so that each piece contained one wood section. Each piece of the glass slide was attached with double adhesive tape to an aluminum stub. The specimens were sputter-coated with gold and examined with a scanning electron microscope (JEOL-JSM 5200). Compared to LM (as documented in previous reports) SEM provided greater depth of focus and resolution of the damaged wood tissues, nematodes and associated bacteria. SEM made it possible to observe the relationship between bacterial distribution and nematode distribution in wood tissues. SEM observations also suggested the possibility of documenting the death of ray cells and other parenchyma cells in relation to disease development. Finally, the current study of PWN in pine seedlings demonstrated that glass slides prepared for LM observations more than 25 years earlier could be successfully processed for examination by SEM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号