首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Abstract. The oviposition rate of individual queens of Solenopsis invicta Buren (Hymenoptera: Formicidae) in relation to their weight and number of queens present in the colony was investigated by direct 2 h observations. There is a strong positive correlation between the weight of a queen and its oviposition rate in both monogyne and polygyne colonies. However, the number of eggs laid per mg queen is higher for moonogyne queens than for polygyne queens. This difference is more evident when the total weight of queens present in a colony is considered. The individual queen oviposition rate is negatively correlated with the number of queens in the colony. In addition, the weight loss per egg laid is significantly greater for polygyne than for monogyne queens, probably due to differences in egg size. These data suggest that oviposition is more efficient in monogyne than in polygyne queens at the individual level; however, at the colony level, polygyne colonies produce significantly more eggs. Comparison of colony level efficiency predicts that polygyne colonies must have at least nine queens to compete reproductively with a mature monogyne queen. Therefore, oligogyny does not appear to be a viable strategy for S.invicata.  相似文献   

2.
This study deals with dispersal behavior of sexuals and intraspecificvariation in queen numbers. The specific questions are: (1)Is there an association between male and female dispersal behaviorand the number of queens in a colony? (2) Is there an associationbetween individual behavior and physiological condition? (3)Do males and females from monogyne (one queen per colony) andpolygyne (several functional queens per colony) colonies differwith respect to size, weight, and physiological condition? Theresults show that both males and females are more prone to dispersein monogyne than in polygyne colonies. Moreover, males and femalesof both monogyne and polygyne colonies show dispersal polymorphism,suggesting that an increased tendency of reproductive femalesto stay in the maternal colony may cause monogyne colonies toswitch to polygyny. The propensity to disperse is associatedwith the physiological condition of individuals. Larger andheavier females containing more fat and glycogen preferentiallydisperse, whereas smaller ones with less fat and glycogen moreeasily dealate and mate without a previous nuptial flight. Maledispersal correlates positively to larger size and higher levelsof glycogen; fat contents do not increase during maturation.The females produced in monogyne colonies are larger, heavier,and contain more fat and glycogen than those produced in polygynecolonies. The males produced in monogyne colonies have relativelylonger wings and are heavier than those produced in polygynecolonies. However, there are no differences in size and fatcontents between males from monogyne and polygyne colonies.  相似文献   

3.
Newly molted female neotenic reproductives of the dampwood termite Zootermopsis angusticollis Hagen were allowed to mature in the presence of a neotenic male, a fixed number of larval helpers, and varying numbers of sibling neotenic queens to assess the impact of secondary polygyny to the individual and colony. Under monogyne conditions, neotenics developed more ovarioles per ovary and had higher individual fecundities after 60 d compared with females under polygyne conditions. Queens in groups of three females were able to gain more body mass than those in groups of five. Although the division of resources provided by helpers reduced individual female development and fecundity under polygyne conditions, it resulted in an overall increase in colony fecundity. In addition, neotenic females in polygynous colonies did not differ significantly in reproductive competence. There was no evidence that neotenics were attacked or injured by other reproductives or larval helpers, suggesting little if any reproductive competition among sibling queens. The physiological responses of neotenics to the increasing queen/worker ratio may have the benefit of enhancing the colony growth at the cost of the fecundity of individual queens.  相似文献   

4.
In social animals, body size can be shaped by multiple factors, such as direct genetic effects, maternal effects, or the social environment. In ants, the body size of queens correlates with the social structure of the colony: colonies headed by a single queen (monogyne) generally produce larger queens that are able to found colonies independently, whereas colonies headed by multiple queens (polygyne) tend to produce smaller queens that stay in their natal colony or disperse with workers. We performed a cross‐fostering experiment to investigate the proximate causes of queen size variation in the socially polymorphic ant Formica selysi. As expected if genetic or maternal effects influence queen size, eggs originating from monogyne colonies developed into larger queens than eggs collected from polygyne colonies, be they raised by monogyne or polygyne workers. In contrast, eggs sampled in monogyne colonies were smaller than eggs sampled in polygyne colonies. Hence, eggs from monogyne colonies are smaller but develop into larger queens than eggs from polygyne colonies, independently of the social structure of the workers caring for the brood. These results demonstrate that a genetic polymorphism or maternal effect transmitted to the eggs influences queen size, which probably affects the social structure of new colonies.  相似文献   

5.
ABSTRACT Social control of egg-laying rate in queens of the fire ant (Solenopsis invicta Buren) was studied by experimental manipulation of the number of larvae, pupae and workers in colonies, and the age and size of larvae and workers. Workers and pupae do not stimulate oviposition by queens. The number of fourth instar larvae, on the other hand, bears a positive log-log relationship to the queen's egg-laying rate. Such larvae are needed both to stimulate and maintain oviposition. Their withdrawal results, within 48 h, in a decline in queen oviposition almost to zero. Their addition to broodless nests results in peak laying in about 4 days. Larvae in the first three stadia and early in the fourth stadium have a much lower effect upon queen fecundity. Sexual larvae are only c. 5% as stimulating on a weight basis, but equivalent on an individual basis. Several associated measures are positively correlated to egg-laying rate: weight of the queen, the number of her vitellogenic follicles per ovariole, total vitellogenic follicles, the time she spends feeding and (usually) the number of workers in the retinue that cares for her. The egg volume is negatively correlated with laying rate, so that queens lay more eggs for the same expenditure of material as laying rate increases. As body size of workers increases, they become less effective in transmitting the larval stimulation to the queen, but worker age has no effect on this ability. For a given number of larvae, queens in small, naturally growing colonies lay fewer, larger eggs than do queens in experimental colonies, but their fecundity increases more rapidly in relation to number of larvae. When larvae are fed vital-dyed food in one experimental colony, and then transferred to an undyed colony, the dye is rapidly transferred to worker crops, and into the queen's eggs, indicating bulk movement of material from larvae to workers to the queen and eggs. Large larvae are more effective at this than small larvae. Fourth instar larvae may be a digestive and metabolic caste that processes protein for egg production by the queen. If that is the case, the queen and fourth instar larvae are linked in a positive feedback loop. Either the logarithmic relation of fecundity to larval numbers or physical limits of the queen may set the maximum egg-laying rate, and thus determine maximum colony size. The data do not allow a clear choice between these alternatives.  相似文献   

6.
Understanding the determinants of reproductive skew (the partitioning of reproduction among co‐breeding individuals) is one of the major questions in social evolution. In ants, multiple‐queen nests are common and reproductive skew among queens has been shown to vary tremendously both within and between species. Proximate determinants of skew may be related to both queen and worker behaviour. Queens may attempt to change their reproductive share through dominance interactions, egg eating and by changing individual fecundity. Conversely, workers are in a position to regulate the reproductive output of queens when rearing the brood. This paper investigates queen behaviour at the onset of egg laying and the effect of queen fecundity and worker behaviour on brood development and reproductive shares of multiple queens in the ant Formica fusca. The study was conducted in two‐queen laboratory colonies where the queens produced only worker offspring. The results show that in this species reproductive apportionment among queens is not based on dominance behaviour and aggression, but rather on differences in queen fecundity. We also show that, although the queen fecundity at the onset of brood rearing is a good indicator of her final reproductive output, changes in brood composition occur during brood development. Our results highlight the importance of queen fecundity as a major determinant of her reproductive success. They furthermore suggest that in highly derived polygyne species, such as the Formica ants, direct interactions as a means for gaining reproductive dominance have lost their importance.  相似文献   

7.
Potential reproductive conflicts are common in social insects and may occur between and within castes. In multiqueen (polygyne) colonies of ants, reproductive conflicts among coexisting queens may be resolved by aggressive interactions and/or by pheromonal signalling. Pheromonal signals may be directed at workers, which may adjust the reproductive shares of queens behaviourally. Workers are expected to favour a queen that is more likely to be their mother and to produce offspring of close kin to them. We used microsatellite markers to study reproductive partitioning between cobreeding Formica fusca queens in a laboratory experiment where workers received a choice between two queens. We expected queens of this species to communicate their reproductive status by chemical communication, because no aggressive interactions between queens have been observed. We found that queens of different reproductive status (with majority, minority or no production) differed in their cuticular hydrocarbon (CHC) profiles. The fecundity of a queen was associated with worker behaviour; the higher a queen's fecundity, the more attention she received from workers. Our results suggest that a queen fecundity signal is encoded in her CHC profile and acts as a pheromone for workers, which respond to the signal by discriminating between queens. Copyright 2002 Published by Elsevier Science Ltd on behalf of The Association for the Study of Animal Behaviour  相似文献   

8.
Thelohania solenopsae is a pathogen of the red imported fire ant, Solenopsis invicta, which debilitates queens and eventually causes the demise of colonies. Reductions of infected field populations signify its potential usefulness as a biological control agent. Thelohania solenopsae can be transmitted by introducing infected brood into a colony. The social forms of the fire ant, that is, monogyny (single queen per colony) or polygyny (multiple queens per colony), are associated with different behaviors, such as territoriality, that affect the degree of intercolony brood transfer. T. solenopsae was found exclusively in polygyne colonies in Florida. Non-synchronous infections of queens and transovarial transmission favor the persistence and probability of detecting infections in polygynous colonies. However, queens or alates with the monogyne genotype can be infected, and infections in monogyne field colonies have been reported from Louisiana and Argentina. Limited independent colony-founding capability and shorter dispersal of alate queens with the polygyne genotype relative to monogyne alates may facilitate the maintenance of infections in local polygynous populations. Demise of infected monogyne colonies can be twice as fast as in polygyne colonies and favors the pathogen's persistence in polygyne fire ant populations. The social form of the fire ant reflects different physiological and behavioral aspects of the queen and colony that will impact T. solenopsae spread and ultimate usefulness for biological control.  相似文献   

9.
The North American seed-harvester ant Pogonomyrmex (Ephebomyrmex) pima displays a dimorphism that consists of winged (alate) and wingless (intermorph) queens; both types of queens are fully reproductive. Microsatellite allele frequencies and a mitochondrial phylogeny demonstrate (1) alate and intermorph queens represent an intraspecific wing polymorphism, and (2) an absence of assortative mating and inbreeding by males. Surveys at our field site in southcentral Arizona, USA, demonstrated that only one type of queen (intermorph or dealate) occurred in each colony, including those excavated during the season in which reproductive sexuals were present. Colony structure appeared to vary by queen type as most intermorph colonies contained multiple mated queens. Alternatively, dealate queen colonies rarely contained a mated queen. Our inability to find mated dealate queens in these colonies probably resulted from difficulty in excavating the entire colony and reproductive queen, especially given that these colonies were only excavated over one day. A morphometric analysis demonstrated that intermorph queens are intermediate in size to that of workers and alate queens, but that intermorph queens retain all of the specialized anatomical features of alate queens (except for wings). Some colonies had queens that foraged and performed nest maintenance activities, and these queens sometimes accounted for a significant portion of colony foraging trips. Dissections revealed that these queens were uninseminated; some of these queens produced males in the laboratory. Received 24 October 2006; revised 1 December 2006; accepted 8 December 2006.  相似文献   

10.
Summary We examined the relationship between queen number and worker size in colonies of the fire antSolenopsis invicta. Worker size in monogyne colonies was significantly greater than in polygyne colonies; furthermore, polygyne colonies snowed a strong negative linear relationship between queen number and worker size. Higher queen pheromone level and/or decreased food availability accompanying an increase in queen number likely play important roles in producing the observed patterns.  相似文献   

11.
Abstract. The influence of weight and colony origin of the queen of Solenopsis geminata (F.) (Hymenoptera: Formicidae) on worker attraction is studied under laboratory conditions. In the first experiment, worker response to individual queens of different weight from the same colony is evaluated. Heavier queens are more attractive than smaller queens to their own workers. In subsequent experiments, the colony origin effect is investigated and worker response to a pair of queens of the same weight from the same or different colonies is compared. When queens are from the same colony, workers do not show a significant preference between queens. However, when queens are from a different colony, workers are significantly more attracted to their own queen than to the foreign queen. Finally, the response of workers to queens of different weight from the same or different colonies is investigated. In both cases, workers are significantly more attracted to a heavier queen than a lighter queen, even if the lighter queen is their own queen. A putative pheromonal component (E)‐6‐(1‐pentenyl)‐2H‐2‐pyranone, is not positively correlated with queen weight.  相似文献   

12.
Several ant species vary in the number of queens per colony, yet the causes and consequences of this variation remain poorly understood. In previous experiments, we found that Formica selysi workers originating from multiple-queen (=polygyne) colonies had a lower resistance to a fungal pathogen than workers originating from single-queen (=monogyne) colonies. In contrast, group diversity improved disease resistance in experimental colonies. This discrepancy between field and experimental colonies suggested that variation in social structure in the field had antagonistic effects on worker resistance, possibly through a down-regulation of the immune system balancing the positive effect of genetic diversity. Here, we examined if workers originating from field colonies with alternative social structure differed in three major components of their immune system. We found that workers from polygyne colonies had a lower bacterial growth inhibitory activity than workers from monogyne colonies. In contrast, workers from the two types of colonies did not differ significantly in bacterial cell wall lytic activity and prophenoloxidase activity. Overall, the presence of multiple queens in a colony correlated with a slight reduction in one inducible component of the immune system of individual workers. This reduced level of immune defence might explain the lower resistance of workers originating from polygyne colonies despite the positive effect of genetic diversity. More generally, these results indicate that social changes at the group level can modulate individual immune defences.  相似文献   

13.
A major goal of studies on social animals is to understand variation in reproduction within and between groups. We used hierarchical regressions to analyze oviposition rates in the neotropical termite Nasutitermes corniger, a species with both monogynous and polygynous colonies. Queen fecundity was a non-linear, saturating function of queen weight. Greater queen weight was associated with larger nest size and with lower numbers of queens per nest, suggesting competition among queens for resources acquired by the colony. The collective egglaying rate of pairs of queens exceeded that of single queens, but further increases in queen number did not raise total fecundity. Skew in oviposition rates, as quantified by Morisita’s index I δ, averaged 1.2, indicating inequalities in reproductive rates that are only moderately greater than expected for random apportionment. The leveling off of oviposition with increasing queen weight suggests that it is costly for individual females to produce eggs at high rates, which could favor tolerance of reproduction by other females, reducing reproductive skew. We hypothesize that the incentive to tolerate reproduction by other females is especially pronounced for heavier queens, because these queens are close to the limit of their own reproductive capacity. Consistent with this hypothesis, skew in oviposition rates was inversely related to the mean weight of queens within a nest. Received 8 March 2007; revised 17 September 2007; accepted 3 October 2007.  相似文献   

14.
The objective of this study was to disentangle the relative effects of Pgm-3 and Gp-9 and/or other closely linked genes on the phenotypes and reproductive success of queens in introduced (USA) populations of S. invicta. Gp-9 or a closely linked gene(s) was found to have major effects on queen weight, the likelihood that queens shed their wings (a behaviour associated with the onset of reproduction), and the probability that queens are accepted in polygyne (multiple-queen) colonies. Our analyses show that once the effect of Gp-9 genotype is taken into account, Pgm-3 genotype no longer is significantly associated with differences in queen phenotype or the probability of queens being accepted in polygyne colonies. This suggests that the associations of Pgm-3 genotype with weight, wing shedding rate and probability of acceptance by polygyne colonies previously reported in studies that did not control for the effects of Gp-9 are due to the strong linkage disequilibrium that exists between Pgm-3 and Gp-9, or to linkage disequilibria between these and other genes affecting queen phenotype and fitness. Several lines of evidence, including data from the native South American range, suggest that additional cryptic alleles at Gp-9, or additional genes in the same linkage group as Gp-9, must be involved in controlling queen phenotype and the large suite of traits important in determining social organization of S. invicta colonies.  相似文献   

15.
Incipient ant colonies are often under fierce competition, making fast growth crucial for survival. To increase production, colonies can adopt multiple queens (pleometrosis), fuse with other colonies or rob brood from neighboring colonies. However, different adoption strategies might have different impacts such as future queen fecundity or future colony size. O. smaragdina queen production was measured in incipient colonies with 2, 3 or 4 founding queens, following the transplantation of 0, 30 or 60 pupae from a donor colony. Pupae developed into mature workers, resulting in increased worker/queen ratios in pupae transplanted treatments and leading to increases in the per capita queen production. Conversely, more queens did not induce increased per capita fecundity. Thus, brood robbing added individuals to the worker force and increased future production of resident queens, whereas queen adoption increased the colony’s future production, but not the production of individual queens.  相似文献   

16.
Summary Proximate control of colony dynamics was studied in the primitively eusocial halictine beeLasioglossum (Dialictus) zephyrum using allozyme markers. The results indicate that workers produce on average 15% of the male brood (range=0–50%) in small laboratory colonies made up of unrelated, single-generation, uninseminated females. This proportion is not influenced by colony size, but is influenced by the relative size of the queen. Large queens are more successful in dominating their workers than are small queens, the queen being defined as the female that is the mother of most of the brood produced in the colony. Older and larger females tend to become queens. Thus, while small differences in age (up to 4 days) influence which female becomes a queen, her ability to control her workers is primarily influenced by her relative size. The proportion of reproduction that is co-opted by the queen is negatively correlated with colony reproductivity (the number of males/day/female). Colony reproductivity is also negatively correlated with the standard deviation in size among females.  相似文献   

17.
ABSTRACT. The abilities of various categories of queens of the fire ant, Solenopsis invicta Buren, to inhibit de-alation by virgin queens are compared by means of a standardized bioassay that detects the presence of an inhibitory pheromone. Highly fecund (high weight) queens of monogynous colonies and virgin replacement queens in queenless colonies have a significantly greater inhibitory capability than queens of lower fecundity (lower weight). In polygynous colonies, inhibitory effectiveness is also positively related to the fertility of individual queens, although no pheromone can be detected in queens that lay few eggs. Alate virgin queens that have overwintered in the parental nest, and sexually mature spring-reared virgin queens, either do not produce the pheromone, or produce too little to be detected. These results are discussed in relation to the degree of ovarian development of different queen categories and in relation to the social status of these queens.  相似文献   

18.
Reproductive skew - the extent to which reproduction is unevenly shared between individuals in a social group - varies greatly between and within animal species. In this study, we investigated how queens share parentage in polygynous (multiple queen) colonies of the Mediterranean ant Pheidole pallidula. We used highly polymorphic microsatellites markers to determine parentage of gynes (new queens), males and workers in P. pallidula field colonies. The comparison of the genotypes of young and adult workers revealed a very low queen turnover (less than 2%). The first main finding of the study of reproductive skew in these colonies was that there was a significant departure from equal contribution of queens to gyne, male and worker production. Reproductive skew was greater for male production than for queen and worker production. There was no relationship between the magnitude of the reproductive skew and the number of reproductive queens per colony, their relatedness and the overall colony productivity, some of the factors predicted to influence the extent of reproductive skew. Finally, our study revealed for the first time a trade-off in the relative contribution of nestmate queens to gyne and worker production. The queens contributing more to gyne production contributed significantly less to worker production.  相似文献   

19.
Both monogyne (single queen per colony) and polygyne (multiple queens per colony) populations of the fire ant Solenopsis invicta are good subjects for tests of kin selection theory because their genetic and reproductive attributes are well-characterized, permitting quantitative predictions about the degree to which sex investment ratios should be female-biased if workers and not queens control reproductive allocation. In the study populations, an investment ratio of 3 females: 1 male is predicted (a proportional investment in females of 0.75) in the monogyne form, whereas a proportional investment in females between 0.637 and 0.740 is expected in the polygyne form. To test these predictions, colonies from a single population of each social form were collected and censused during three different seasons. Consistent with their alternative modes of colony founding, monogyne colonies invested more in reproduction (sexual production) and less in growth/maintenance (worker production) than did the polygyne colonies. Overall, the sex investment ratios were female-biased in both forms, although there was considerable seasonal variation. After adjusting for sex-specific energetic costs, the proportional investment in females was 0.607 in the monogyne population, a value in between those expected under complete control by either the queen or the workers. However, when combined with data from four other previously studied monogyne populations in the U.S.A., the mean investment ratio did not differ significantly from the value predicted if workers have exclusive control. In the polygyne population, the proportional investment in females of 0.616 was consistent with the level of female bias expected under partial to complete worker control, although the potential influence of two confounding factors — possible contact with monogyne colonies and the preponderance of sterile diploid males — weakens this conclusion somewhat. Taken as a whole, the sex investment ratios of monogyne and polygyne populations of S. invicta are consistent with at least partial worker control. Of several ultimate and proximate explanations that have been proposed to explain inter-colonial variation in the sex investment ratio, only the effect of the primary sex ratio (female-determined eggs: male-determined eggs) laid by the queen appears to account for the observed variation among monogyne colonies. In the polygyne population, there is limited support for the hypothesis that greater resource abundance favors investment in females.  相似文献   

20.
Evolutionary theories of ageing predict that life span increases with decreasing extrinsic mortality, and life span variation among queens in ant species seems to corroborate this prediction: queens, which are the only reproductive in a colony, live much longer than queens in multi-queen colonies. The latter often inhabit ephemeral nest sites and accordingly are assumed to experience a higher mortality risk. Yet, all prior studies compared queens from different single- and multi-queen species. Here, we demonstrate an effect of queen number on longevity and fecundity within a single, socially plastic species, where queens experience the similar level of extrinsic mortality. Queens from single- and two-queen colonies had significantly longer lifespan and higher fecundity than queens living in associations of eight queens. As queens also differ neither in morphology nor the mode of colony foundation, our study shows that the social environment itself strongly affects ageing rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号