首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Escherichia coli is the most common organism associated with asymptomatic bacteriuria (ABU) in humans. In contrast to uropathogenic E. coli (UPEC) that cause symptomatic urinary tract infection, very little is known about the mechanisms by which these strains colonize the urinary tract. Here, we have investigated the biofilm-forming capacity on abiotic surfaces of groups of ABU strains and UPEC strains in human urine. We found that there is a strong bias; ABU strains were significantly better biofilm formers than UPEC strains. Our data suggest that biofilm formation in urinary tract infectious E. coli seems to be associated with ABU strains and appears to be an important strategy used by these strains for persistence in this high-flow environment.  相似文献   

2.
Urinary tract infections (UTIs) affect millions of people each year. Escherichia coli is the most common organism associated with asymptomatic bacteriuria (ABU) in humans. Persons affected by ABU may carry a particular E. coli strain for extended periods of time without any symptoms. In contrast to uropathogenic E. coli (UPEC) that cause symptomatic UTI, very little is known about the mechanisms by which these strains colonize the urinary tract. Here, we have investigated the growth characteristics in human urine as well as adhesin repertoire of nine ABU strains; the ability of ABU strains to compete against the UPEC strain CFT073 was also studied. The different ABU strains displayed a wide variety of the measured characteristics. Half of the ABU strains displayed functional type 1 fimbriae while only one expressed functional P fimbriae. A good correlation between the growth rate of a particular strain and the survival of the strain in competition against CFT073 was observed. Our results support the notion that for strains with reduced capacity to express fimbriae, the ability to grow fast in human urine becomes crucial for colonization of the urinary tract.  相似文献   

3.
A highly discriminatory and standardized biochemical fingerprinting method was used to monitor the persistence and colonization of intestinal Escherichia coli isolated from the feces of four sows and their litters (four piglets from each) during the suckling, postweaning, and fattening periods. Altogether, 195 fecal samples were collected and 1,827 E. coli strains were tested (mean number of isolates tested per fecal sample per pig, 9.5). Strains were divided into similarity groups on the basis of their biochemical phenotypes (BPTs). The diversity of E. coli strains in each sample was measured with Simpson's index of diversity, and similarity between E. coli floras of piglets was calculated with a population similarity index. Each fecal sample contained several BPTs of E. coli, some of which dominated that population. The intestinal colonization of piglets consisted of successive waves of different E. coli BPTs, the tenure of which varied from a few days to 2 weeks. Most of these BPTs disappeared in the succeeding samples and were not recovered again from the same piglets. On the other hand, some E. coli strains which colonized piglets early during the suckling period persisted for a long period and were referred to as resident BPTs. Each piglet carried more than one resident BPT (mean of 2.4 BPTs per pig), some of which were also found in other piglets.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Fifty nine Escherichia coli strains obtained from patients with upper or lower urinary tract infections (UTI) and 30 E. coli strains isolated from stools of healthy individuals were tested for hemolytic and cytotoxic activities. Forty four percent of uropathogenic E. coli (UPEC) and 3.3% of fecal E. coli were hemolytic. Among the hemolytic UPEC, 92% produced alpha-hemolysin. A cytotoxic activity was detected in culture filtrates of 71% of UPEC strains and 30% of fecal E. coli. No relationship was found between cytotoxic and hemolytic activities or between cytotoxic titers and UPEC origin (upper or lower UTI). E. coli cytotoxin has a cytocidal activity against some epithelioid cultured cell lines (Vero, HeLa and Hep-2) but was almost inactive for avian-fibroblast cells. Cytotoxin-affected cells appeared rounded, refractile and detached from the surface of the vessel. Some characteristics exhibited by the cytotoxin as the morphological response induced on cells, the increasing of cytopathic effect with time, its irreversible cytocidal activity and its heat-lability resemble the properties described for E. coli Verotoxin (VT). Adherence to uroepithelial cells is recognized as a virulence factor for UPEC. It is suggested that cell damage by cytotoxic and adhering UPEC might contribute to E. coli virulence to urinary tract.  相似文献   

5.
Biofilm-associated bacterial infections have a major impact on artificial implants such as urinary catheters, often with devastating consequences. The capacity of a microorganism to form a biofilm on a surface depends on the nature of the surface and its conditioning. When a urinary catheter is exposed to urine, various components adsorb onto the surface and form a conditioning film, which becomes the real interface where microbial interaction takes place. It follows that the material constituting the catheter determines the composition of the conditioning film, which in turn influences which microorganisms can attach. Urinary tract infectious (UTI) Escherichia coli range in pathogenicity and the damage they cause--from benign asymptomatic bacteriuria (ABU) strains, which inflict no or few problems to the host, to uropathogenic E. coli (UPEC) strains, which are virulent and often cause severe symptoms and complications. We have found that whereas ABU strains produce better biofilms on polystyrene and glass, UPEC strains have a clear competitive advantage during biofilm growth on catheter surfaces. Our results indicate that some silicone and silicone-latex catheters actually select for and promote biofilm formation of the most virulent group of UTI E. coli strains, hardly a desirable situation for the catheterized patient.  相似文献   

6.
The severity of urinary tract infection (UTI) reflects the quality and magnitude of the host response. While strong local and systemic innate immune activation occurs in patients with acute pyelonephritis, the response to asymptomatic bacteriuria (ABU) is low. The immune response repertoire in ABU has not been characterized, due to the inherent problem to distinguish bacterial differences from host-determined variation. In this study, we investigated the host response to ABU and genetic variants affecting innate immune signaling and UTI susceptibility. Patients were subjected to therapeutic urinary tract inoculation with E. coli 83972 to ensure that they were exposed to the same E. coli strain. The innate immune response repertoire was characterized in urine samples, collected from each patient before and after inoculation with bacteria or PBS, if during the placebo arm of the study. Long-term E. coli 83972 ABU was established in 23 participants, who were followed for up to twelve months and the innate immune response was quantified in 233 urine samples. Neutrophil numbers increased in all but two patients and in an extended urine cytokine/chemokine analysis (31 proteins), the chemoattractants IL-8 and GRO-α, RANTES, Eotaxin-1 and MCP-1, the T cell chemoattractant and antibacterial peptide IP-10, inflammatory regulators IL-1-α and sIL-1RA and the T lymphocyte/dendritic cell product sIL-2Rα were detected and variably increased, compared to sterile samples. IL-6, which is associated with symptomatic UTI, remained low and numerous specific immune mediators were not detected. The patients were also genotyped for UTI-associated IRF3 and TLR4 promoter polymorphisms. Patients with ABU associated TLR4 polymorphisms had low neutrophil numbers, IL-6, IP-10, MCP-1 and sIL-2Rα concentrations. Patients with the ABU-associated IRF3 genotype had lower neutrophils, IL-6 and MCP-1 responses than the remaining group. The results suggest that the host-specific, low immune response to ABU mainly includes innate immune mediators and that host genetics directly influence the magnitude of this response.  相似文献   

7.
Infections outside of the intestinal tract due to pathogenic strains of Escherichia coli result in significant morbidity, mortality and increased healthcare costs. The ability of these strains to cause both mucosal and systemic infections, as well as recurrent infections due to the same (homologous) strain suggests the hypothesis that strains of E. coli that cause infection outside of the intestinal tract possess proteases that are capable of cleaving IgA1, IgA2, sIgA or IgG. To test this hypothesis the ability of eight E. coli strains, isolated from sites outside of the urinary tract and 14 homologous and 11 heterologous strains of E. coli that were isolated from women with recurrent UTI, to cleave IgA1, IgA2, sIgA or IgG was evaluated. Our experimental design allowed for detection of cell-associated and secreted immunoglobulin proteases in both log and stationary phase. Surprisingly, none of these 33 human clinical isolates when grown in iron depleted Luria-Bertani medium or human urine were able to degrade the immunoglobulins assessed. Despite previous studies suggesting otherwise, the findings from this study support the concept that strains of E. coli that cause infection outside of the intestinal tract do not possess proteases that cleave the human immunoglobulins IgA1, IgA2, sIgA or IgG.  相似文献   

8.
Abstract Expression of globoside-specific pilus adhesin of Escherichia coli is the virulence factor most commonly associated with pyelonephritis. In the clinical isolate J96 (O4:K6:H5) expression of globoside binding pili require the proteins encoded by the papE, papF , and papG genes in the pap gene cluster. Probes derived from these genes were used in dot blot hybridization analysis of E. coli urinary tract isolates obtained from patients with significant bacteriuria. Fecal E. coli isolates from healthy individuals were also analyzed. The probe encompassing the papF and papF J96 genes hybridized to all urinary tract infectious (UTI) isolates expressing globoside-specific adhesin, whereas papG J96 only hybridized to the strain from which the fragment was cloned. In contrast, a papG -specific probe from the O:6 strain IA2 hybridized to all but one of the UTI isolates that expressed the adhesin. In both materials, but especially among the fecal isolates, strains were found that hybridized to the probes but did not express the adhesin. The data shows that papEF -specific DNA can be used for the diagnosis of potentially pyelonephritic E. coli .  相似文献   

9.
Urinary tract infections (UTIs) are among the most common bacterial infections and are responsible for significant morbidity and health care costs worldwide. The main bacterial cause of uncomplicated UTI is Escherichia coli, which possesses numerous virulence factors (VFs). Many studies of the pathogenesis of E. coli UTI have centered on VF genes. Hence, the development of better molecular assays to study VF genes would facilitate these studies. We developed a highly sensitive and specific multiplex PCR-based reverse line blot (mPCR/RLB) assay to simultaneously detect 22 VF genes of uropathogenic E. coli and then used it to characterize 180 isolates from nonpregnant women of child-bearing age with cystitis and 153 fecal isolates from similar-age healthy women, in regional New South Wales, Australia. The assay accurately identified all VF genes (of the 22 under study) known to be present in 30 previously characterized control strains. The detection limits were 28 ng of DNA from E. coli isolates and 50 CFU/ml in mock-infected urine specimens containing known concentrations of E. coli. Cystitis isolates (compared to the fecal isolates) showed a significantly higher prevalence of 18 individual VF genes and contained significantly more VF genes per isolate (median number, 18.5 versus 6.5 [P = 0.001]). Discordance between paired probes for a given VF gene occurred in several clinical test isolates but no reference strains and among the test isolates was associated with fecal source (10% of VF genes versus 2% for cystitis isolates [P < 0.001]). This novel mPCR/RLB method is a potentially powerful tool for investigating the prevalence and distribution of VFs in E. coli.  相似文献   

10.
ABSTRACT: BACKGROUND: Uropathogenic strains of Escherichia coli cause symptomatic infections whereas asymptomatic bacteriuria (ABU) strains are well adapted for growth in the human urinary tract, where they establish long-term bacteriuria. Human urine is a very complex growth medium that could be perceived by certain bacteria as a stressful environment. To investigate a possible imbalance between endogenous oxidative response and antioxidant mechanisms, lipid oxidative damage estimated as thiobarbituric acid reactive substances (TBARS) content was evaluated in twenty-one E. coli belonging to various pathovars and phylogenetic groups. Antioxidant defense mechanisms were also analysed. RESULTS: During exponential growth in urine, TBARS level differs between strains, without correlation with the ability to grow in urine which was similarly limited for commensal, ABU and uropathogenic strains. In addition, no correlation between TBARS level and the phylogroup or pathogenic group is apparent. The growth of ABU strain 83972 was associated with a high level of TBARS and more active antioxidant defenses that reduce the imbalance. CONCLUSIONS: Our results indicate that growth capacity in urine is not a property of ABU strains. However, E. coli isolates respond very differently to this stressful environment. In strain ABU 83972, on one hand, the increased level of endogenous reactive oxygen species may be responsible for adaptive mutations. On the other hand, a more active antioxidant defense system could increase the capacity to colonize the bladder.  相似文献   

11.
Formally included in the larger category of extraintestinal pathogenic Escherichia coli (ExPEC), the uropathogenic E. coli remains the most frequent cause of urinary tract infection (UTI), an important endemic health problem. The genomic DNA of E. coli urinary isolates from adults diagnosed with urinary tract infections and of E. coli fecal isolates from healthy subjects was analysed by PCR for the presence of virulence factor encoding genes pap, sfa/foc, afa, hly and cnf and by field inversion gel electrophoresis (FIGE) fingerprinting of XbaI DNA macrorestriction fragments. The aim was to obtain more detailed microbiological data regarding the community circulating strains in respect of their virulence potential and genetic relatedness. Almost 70% of the urinary strains carried at least one of the target virulence genes, and only 35.5% of the fecal E. coli strains were positive in the PCR screening. Taking into account the virulence genotypes exhibited, a part of the strains isolated from the urinary tract could be defined as belonging to the ExPEC pathotype. A unique FIGE profile was obtained for each of the selected isolates and the dendrogram generated by Taxotron software package analysis suggested a polyclonal population of potential uropathogenic strains clustered into 14 groups of only 60% similarity. For better understanding the epidemiology of UTIs, diseases commonly caused by such a heterogeneous species like E. coli, molecular analysis methods could be essential due to their increased power of identification and fingerprinting.  相似文献   

12.
We have previously shown that Escherichia coli BJ4 has similar doubling time in mice that are mono-associated (having only the inoculated E. coli BJ4) or streptomycin-treated (having mainly gram-positive bacteria plus the inoculated E. coli BJ4). We also showed that when the mice were conventionalized (fed cecum homogenate from conventional mice or ones with a complete microbial flora), the introduction of complete flora in both cases increased the in vivo doubling time, while decreasing the colony counts in fecal samples. To determine whether the increase in doubling time could explain the decrease in colony counts, we analyzed our previous results by a chemostat model. The analysis shows that the increasing doubling time alone is sufficient to explain the decrease in colony counts in mono-associated mice, but not in the streptomycin-treated mice. The observed decreasing rate in colony counts in streptomycin-treated mice is slower than predicted. Furthermore, whereas the model predicted a decrease to extinction in both mice, the E. coli persist at a frequency 10-80 times higher in streptomycin-treated mice than in mono-associated mice. Thus, while a chemostat model is able to explain some of the population dynamics of intestinal bacteria in mice, additional factors not included in the model are stabilizing the system. Because we find that E. coli declines more slowly and to a higher stabilization frequency in streptomycin-treated mice, which have a more diverse flora before conventionalization, we take these results to suggest that the persistence of E. coli populations is promoted by species diversity. We propose that a mechanism for the persistence may be the presence of new E. coli niches created by keystone species in the more diverse flora.  相似文献   

13.
The intestinal microbe Escherichia coli is subject to fecal deposition in secondary habitats, where it persists transiently, allowing for the opportunity to colonize new hosts. Selection in the secondary habitat can be postulated, but its impact on the genomic diversity of E. coli is unknown. Environmental selective pressure on extrahost E. coli can be revealed by landscape genetic analysis, which examines the influences of dispersal processes, landscape features, and the environment on the spatiotemporal distribution of genes in natural populations. We conducted multilocus sequence analysis of 353 E. coli isolates from soil and fecal samples obtained in a recreational meadow to examine the ecological processes controlling their distributions. Soil isolates, as a group, were not genetically distinct from fecal isolates, with only 0.8% of genetic variation and no fixed mutations attributed to the isolate source. Analysis of the landscape genetic structure of E. coli populations showed a patchy spatial structure consistent with patterns of fecal deposition. Controlling for the spatial pattern made it possible to detect environmental gradients of pH, moisture, and organic matter corresponding to the genetic structure of E. coli in soil. Ecological distinctions among E. coli subpopulations (i.e., E. coli reference collection [ECOR] groups) contributed to variation in subpopulation distributions. Therefore, while fecal deposition is the major predictor of E. coli distributions on the field scale, selection imposed by the soil environment has a significant impact on E. coli population structure and potentially amplifies the occasional introduction of stress-tolerant strains to new host individuals by transmission through water or food.  相似文献   

14.
S D Abbey 《Microbios》1987,49(199):73-77
The Port Harcourt metropolis of Nigeria was screened to establish the prevalence of asymptomatic bacteriuria (ABU) over a 3 year period. An occurrence rate of 15% was detected. The females presented a higher incidence rate (9%) than the males (6%). Previous history of urinary tract infection (UTI) was seen to be contributory to ABU; so also was sexual activity. Of the isolates obtained, Escherichia coli was found to be predominant (45%). An isolation rate of 3.7% was realised for Staphylococcus epidermidis. This emphasizes its role in UTI. The advantages of screening for ABU was examined and it is suggested that individuals should be screened for ABU at least twice a year.  相似文献   

15.
Due to their opportunistic and gregarious nature, gulls may be important reservoirs and vectors for anthropogenically derived fecal pathogens in coastal areas. We used ribotyping, a genotypic bacterial source tracking method, to compare populations of Escherichia coli among herring gulls Larus argentatus, great black-backed gulls L. marinus, wastewater, and landfill trash in New Hampshire and Maine, USA. Concentrations of E. coli in gull feces varied widely among individuals, but were generally high (6.0 x 10(1) to 2.5 x 10(9) g(-1) wet weight). Of 39 E. coli isolates from L. argentatus, 67% had banding patterns that were > or = 90% similar to those from wastewater and trash, whereas only 39% of 36 L. marinus isolates exhibited > or = 90% similarity to these sources. Strains of E. coli from gulls matched (> or = 90% similarity) more strains from wastewater (39% matching) than from trash (15% matching). E. coli isolates from L. marinus feces exhibited a greater diversity of banding patterns than did isolates from L. argentatus. There were more unique E. coli banding patterns in trash samples than in wastewater, and higher diversity indices in the former compared to the latter. These findings suggest that both species of gulls, especially L. argentatus, obtain fecal bacteria from wastewater and landfill trash, which they may transport to recreational beaches and waters. Our results also indicate that E. coli populations may vary widely between gull species, and between the anthropogenic habitats that they frequent, i.e. landfills and wastewater treatment facilities.  相似文献   

16.
We tried to inhibit the formation of azoxymethane-induced aberrant crypt foci (ACF) in the rat intestine by feeding a culture of a beta-glucuronidase-deficient Escherichia coli strain or a cell suspension of a lycopene-producing E. coli strain. Feeding of the former culture to F344 rats did not decrease fecal beta-glucuronidase activity or the number of ACF compared with the control beta-glucuronidase-proficient groups. However, a significant positive correlation between the fecal beta-glucuronidase activity and the ACF number was observed among groups treated with cultures of beta-glucuronidase-proficient and -deficient strains. In the group treated with lycopene-producing cells, the number of ACF was significantly lower than that in the control group. A vegetable juice containing a larger amount of lycopene than a cell suspension of the lycopene-producing E. coli also decreased the number of ACF to the same extent as a cell suspension of the lycopene-producing bacteria. These results suggest that feeding of the beta-glucuronidase-deficient E. coli is not very effective in preventing colon carcinogenesis, although activity of the fecal beta-glucuronidase is associated with AOM-induced ACF formation, and that lycopene-producing intestinal bacteria can effectively prevent colon carcinogenesis.  相似文献   

17.
Repetitive element anchored PCR was used to evaluate the genetic profiles of Escherichia coli isolated from surface water contaminated with urban stormwater, sanitary sewage, and gull feces to determine if strains found in environmental samples reflect the strain composition of E. coli obtained from host sources. Overall, there was less diversity in isolates collected from river and beach sites than with isolates obtained from human and nonhuman sources. Unique strain types comprised 28.8, 29.2, and 15.0% of the isolate data sets recovered from stormwater, river water, and beach water, respectively. In contrast, 50.4% of gull isolates and 41.2% of sewage isolates were unique strain types. River water, which is expected to contain E. coli strains from many diffuse sources of nonpoint source pollution, contained strains most closely associated with other river water isolates that were collected at different sites or on different days. However, river sites impacted by sewage discharge had approximately 20% more strains similar to sewage isolates than did sites impacted by stormwater alone. Beach sites with known gull fecal contamination contained E. coli most similar to other beach isolates rather than gull isolates collected at these same sites, indicating underrepresentation of possible gull strains. These results suggest large numbers of strains are needed to represent contributing host sources within a geographical location. Additionally, environmental survival may influence the composition of strains that can be recovered from contaminated waters. Understanding the ecology of indicator bacteria is important when interpreting fecal pollution assessments and developing source detection methodology.  相似文献   

18.
Genetic diversity, isolation frequency, and persistence were determined for Escherichia coli O157 strains from range cattle production environments. Over the 11-month study, analysis of 9,122 cattle fecal samples, 4,083 water source samples, and 521 wildlife fecal samples resulted in 263 isolates from 107 samples presumptively considered E. coli O157 as determined by culture and latex agglutination. Most isolates (90.1%) were confirmed to be E. coli O157 by PCR detection of intimin and Shiga toxin genes. Pulsed-field gel electrophoresis (PFGE) of XbaI-digested preparations revealed 79 unique patterns (XbaI-PFGE subtypes) from 235 typeable isolates confirmed to be E. coli O157. By analyzing up to three isolates per positive sample, we detected an average of 1.80 XbaI-PFGE subtypes per sample. Most XbaI-PFGE subtypes (54 subtypes) were identified only once, yet the seven most frequently isolated subtypes represented over one-half of the E. coli O157 isolates (124 of 235 isolates). Recurring XbaI-PFGE subtypes were recovered from samples on up to 10 sampling occasions and up to 10 months apart. Seven XbaI-PFGE subtypes were isolated from both cattle feces and water sources, and one of these also was isolated from the feces of a wild opossum (Didelphis sp.). The number of XbaI-PFGE subtypes, the variable frequency and persistence of subtypes, and the presence of identical subtypes in cattle feces, free-flowing water sources, and wildlife feces indicate that the complex molecular epidemiology of E. coli O157 previously described for confined cattle operations is also evident in extensively managed range cattle environments.  相似文献   

19.
Escherichia coli is the major aetiological agent of urinary tract infections (UTI). Like diarrhoeagenic strains of E. coli, uropathogenic isolates possess virulence determinants that distinguish them from commensal strains and allow them to produce the clinical manifestations associated with UTI. Several autotransporter proteins have been associated with the ability of E. coli, and other Gram-negative bacteria, to cause disease. Recently, we described the existence within uropathogenic E. coli (UPEC) strains of Sat, a toxin of the serine protease autotransporter of Enterobacteriaceae (SPATE) subfamily. Using features common to proteins secreted via the autotransporter pathway we have identified nine additional autotransporter proteins from the genomic sequence data of UPEC CFT073. Surprisingly, two additional members of the SPATE subfamily were identified. One protein, designated PicU, was homologous to the Pic protein identified in Shigella flexneri and enteroaggregative E. coli. The PicU protein was expressed and investigated for functional activity.  相似文献   

20.
Escherichia coli strains causing urinary tract infection (UTI) are increasingly recognized as belonging to specific clones. E. coli clone O25b:H4-ST131 has recently emerged globally as a leading multi-drug resistant pathogen causing urinary tract and bloodstream infections in hospitals and the community. While most molecular studies to date examine the mechanisms conferring multi-drug resistance in E. coli ST131, relatively little is known about their virulence potential. Here we examined E. coli ST131 clinical isolates from two geographically diverse collections, one representing the major pathogenic lineages causing UTI across the United Kingdom and a second representing UTI isolates from patients presenting at two large hospitals in Australia. We determined a draft genome sequence for one representative isolate, E. coli EC958, which produced CTX-M-15 extended-spectrum β-lactamase, CMY-23 type AmpC cephalosporinase and was resistant to ciprofloxacin. Comparative genome analysis indicated that EC958 encodes virulence genes commonly associated with uropathogenic E. coli (UPEC). The genome sequence of EC958 revealed a transposon insertion in the fimB gene encoding the activator of type 1 fimbriae, an important UPEC bladder colonization factor. We identified the same fimB transposon insertion in 59% of the ST131 UK isolates, as well as 71% of ST131 isolates from Australia, suggesting this mutation is common among E. coli ST131 strains. Insertional inactivation of fimB resulted in a phenotype resembling a slower off-to-on switching for type 1 fimbriae. Type 1 fimbriae expression could still be induced in fimB-null isolates; this correlated strongly with adherence to and invasion of human bladder cells and bladder colonisation in a mouse UTI model. We conclude that E. coli ST131 is a geographically widespread, antibiotic resistant clone that has the capacity to produce numerous virulence factors associated with UTI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号