首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transfer RNAs (tRNA) are important molecules that involved in protein translation machinery and acts as a bridge between the ribosome and codon of the mRNA. The study of tRNA is evolving considerably in the fields of bacteria, plants, and animals. However, detailed genomic study of the cyanobacterial tRNA is lacking. Therefore, we conducted a study of cyanobacterial tRNA from 61 species. Analysis revealed that; cyanobacteria contain thirty-six to seventy-eight tRNA gens per genome that encodes for 20 tRNA isotypes. The number of iso-acceptors (anti-codons) ranged from thirty-two to forty-three per genome. tRNAIle with anti-codon AAU, GAU, and UAU was reported to be absent from the genome of Gleocapsa PCC 73,106 and Xenococcus sp. PCC 7305. Instead, they were contained anti-codon CAU that is common to tRNAMet and tRNAIle as well. The iso-acceptors ACA (tRNACys), ACC (tRNAGly), AGA, ACU (tRNASer), AAA (tRNAPhe), AGG (tRNAPro), AAC (tRNAVal), GCG (tRNAArg), AUG (tRNAHis), and AUC (tRNAAsp) were absent from the genome of cyanobacterial lineages studied so far. A few of the cyanobacterial species encode suppressor tRNAs, whereas none of the species were found to encode a selenocysteine iso-acceptor. Cyanobacterial species encode a few putative novel tRNAs whose functions are yet to be elucidated.  相似文献   

2.
High specificity in aminoacylation of transfer RNAs (tRNAs) with the help of their cognate aminoacyl-tRNA synthetases (aaRSs) is a guarantee for accurate genetic translation. Structural and mechanistic peculiarities between the different tRNA/aaRS couples, suggest that aminoacylation systems are unrelated. However, occurrence of tRNA mischarging by non-cognate aaRSs reflects the relationship between such systems. In Saccharomyces cerevisiae, functional links between arginylation and aspartylation systems have been reported. In particular, it was found that an in vitro transcribed tRNAAsp is a very efficient substrate for ArgRS. In this study, the relationship of arginine and aspartate systems is further explored, based on the discovery of a fourth isoacceptor in the yeast genome, tRNA4Arg. This tRNA has a sequence strikingly similar to that of tRNAAsp but distinct from those of the other three arginine isoacceptors. After transplantation of the full set of aspartate identity elements into the four arginine isoacceptors, tRNA4Arg gains the highest aspartylation efficiency. Moreover, it is possible to convert tRNA4Arg into an aspartate acceptor, as efficient as tRNAAsp, by only two point mutations, C38 and G73, despite the absence of the major anticodon aspartate identity elements. Thus, cryptic aspartate identity elements are embedded within tRNA4Arg. The latent aspartate acceptor capacity in a contemporary tRNAArg leads to the proposal of an evolutionary link between tRNA4Arg and tRNAAsp genes.  相似文献   

3.
The human mitochondrial genome encodes 22 tRNAs interspersed among the two rRNAs and 11 mRNAs, often without spacers, suggesting that tRNAs must be efficiently excised. Numerous maternally transmitted diseases and syndromes arise from mutations in mitochondrial tRNAs, likely due to defect(s) in tRNA metabolism. We have systematically explored the effect of pathogenic mutations on tRNAIle precursor 3′ end maturation in vitro by 3′-tRNase. Strikingly, four pathogenic tRNAIle mutations reduce 3′-tRNase processing efficiency (Vmax / KM) to ~10-fold below that of wild-type, principally due to lower Vmax. The structural impact of mutations was sought by secondary structure probing and wild-type tRNAIle precursor was found to fold into a canonical cloverleaf. Among the mutant tRNAIle precursors with the greatest 3′ end processing deficiencies, only G4309A displays a secondary structure substantially different from wild-type, with changes in the T domain proximal to the substitution. Reduced efficiency of tRNAIle precursor 3′ end processing, in one case associated with structural perturbations, could thus contribute to human mitochondrial diseases caused by mutant tRNAs.  相似文献   

4.
One form of aspartic acid tRNA from Drosophila,melanogaster (tRNAAsp) is selectively bound to columns of Con A-Sepharose. Unlike the other Q-containing tRNAs of Drosophila, it therefore appears that tRNAAsp contains the more highly modified nucleoside, Q1 (mannose form) in its anticodon. This is further supported by the chromatographic insensitivity of tRNAAsp to NaIO4 treatment. Utilizing Con A-Sepharose chromatography, tRNAAsp from Drosophila was purified and its nucleoside composition determined by chemical tritium labelling. In addition to the major nucleosides, this tRNA contains rT, hU, m5C, ψ, and Q1, but no other modified nucleosides. Its nucleoside composition is very similar to yeast tRNAAsp.  相似文献   

5.
Transfer RNA from Escherichia coli C6, a Met, Cys, relA mutant, was previously shown to contain an altered tRNAIle which accumulates during cysteine starvation (Harris, C.L., Lui, L., Sakallah, S. and DeVore, R. (1983) J. Biol. Chem. 258, 7676–7683). We now report the purification of this altered tRNAIle and a comparison of its aminoacylation and chromatographic behavior and modified nucleoside content to that of tRNAIle purified from cells of the same strain grown in the presence of cysteine. Sulfur-deficient tRNAIle (from cysteine-starved cells) was found to have a 5-fold increased Vmax in aminoacylation compared to the normal isoacceptor. However, rates or extents of transfer of isoleucine from the [isoleucyl ∼ AMP · Ile-tRNA synthetase] complex were identical with these two tRNAs. Nitrocellulose binding studies suggested that the sulfur-deficient tRNAIle bound more efficiently to its synthetase compared to normal tRNAIle. Modified nucleoside analysis showed that these tRNAs contained identical amounts of all modified bases except for dihydrouridine and 4-thiouridine. Normal tRNAIle contains 1 mol 4-thiouridine and dihydrouridine per mol tRNA, while cysteine-starved tRNAIle contains 2 mol dihydrouridine per mol tRNA and is devoid of 4-thiouridine. Several lines of evidence are presented which show that 4-thiouridine can be removed or lost from normal tRNAIle without a change in aminoacylation properties. Further, tRNA isolated from E. coli C6 grown with glutathione instead of cysteine has a normal content of 4-thiouridine, but its tRNAIle has an increased rate of aminoacylation. We conclude that the low content of dihydrouridine in tRNAIle from E. coli cells grown in cysteine-containing medium is most likely responsible for the slow aminoacylation kinetics observed with this tRNA. The possibility that specific dihydrouridine residues in this tRNA might be necessary in establishing the correct conformation of tRNAIle for aminoacylation is discussed.  相似文献   

6.
We have begun a systematic search for potential tRNA genes in wheat mtDNA, and present here the sequences of regions of the wheat mitochondrial genome that encode genes for tRNAAsp (anticodon GUC), tRNAPro (UGG), tRNATyr (GUA), and two tRNAsSer (UGA and GCU). These genes are all solitary, not immediately adjacent to other tRNA or known protein coding genes. Each of the encoded tRNAs can assume a secondary structure that conforms to the standard cloverleaf model, and that displays none of the structural aberrations peculiar to some of the corresponding mitochondrial tRNAs from other eukaryotes. The wheat mitochondrial tRNA sequences are, on average, substantially more similar to their eubacterial and chloroplast counterparts than to their homologues in fungal and animal mitochondria. However, an analysis of regions 150 nucleotides upstream and 100 nucleotides downstream of the tRNA coding regions has revealed no obvious conserved sequences that resemble the promoter and terminator motifs that regulate the expression of eubacterial and some chloroplast tRNA genes. When restriction digests of wheat mtDNA are probed with 32P-labelled wheat mitochondrial tRNAs, <20 hybridizing bands are detected, whether enzymes with 4 bp or 6 bp recognition sites are used. This suggests that the wheat mitochondrial genome, despite its large size, may carry a relatively small number of tRNA genes.  相似文献   

7.
An enzyme was purified from rat liver and leukemic rat spleen which methylates guanosine residues in tRNA to N2-methylguanosine. By sequence analysis of bulk E. coli tRNA methylated with crude extracts it was shown that the enzyme is responsible for about 50% of total m2G formed invitro. The extent of methylation of a number of homogenous tRNA species was measured using the purified enzyme from both sources. Among tested E. coli tRNAs only tRNAArg, tRNAPhe, and tRNAVal yielded significantly more m2G than the bulk tRNA. The Km for tRNAArg in the methylation reaction with enzymes from either tissue was 7.8 × 10−7 M as compared to the value 1 × 10−5 M obtained for the bulk tRNA. In a pancreatic RNase digest of bulk tRNA as well as of pure tRNAArg, tRNAPhe, and tRNAVal, A-m2G-Cp was found to be the only sequence methylated. Thus, the mammalian methyltransferase specifically recognizes the guanylate residue at position 10 from the 5′-end contained in a sequence (s4)U-A-G-Cp. Furthermore, there is no change between the enzyme from normal liver and leukemic spleen in the affinity for tRNA, the methylating capacity, and tRNA site and sequence recognition specificity.  相似文献   

8.
Two tRNA sequences from Methanobacterium thermoautotrophium are reported. Both tRNAGlyGCC and tRNANUUAsn, the first tRNA sequences from methanogens, were determined by partial hydrolyses (both chemical and enzymatic) and analyzed by gel electrophoresis. The two tRNAs contain the unusual T-loop modifications, Cm and m1I, which are present in other archaebacterial tRNAs. Finally the presence of an unknown modification in the D-loop has been inferred by a large jump in the sequence ladder. These tRNAs are approximately equidistant from eubacterial or eukaryotic tRNAs.  相似文献   

9.
A restriction map of the T4 transfer RNA gene cluster   总被引:4,自引:0,他引:4  
  相似文献   

10.
The yeast MTO1 gene encodes an evolutionarily conserved protein for the biosynthesis of the 5-carboxymethylaminomethyl group of cmnm5s2U in the wobble position of mitochondrial tRNA. However, mto1 null mutant expressed the respiratory deficient phenotype only when coupled with the C1409G mutation of mitochondrial 15S rRNA. To further understand the role of MTO1 in mitochondrial RNA metabolism, the yeast mto1 null mutants carrying either wild-type (PS) or 15S rRNA C1409G allele (PR) have been characterized by examining the steady-state levels, aminoacylation capacity of mitochondrial tRNA, mitochondrial gene expression and petite formation. The steady-state levels of tRNALys, tRNAGlu, tRNAGln, tRNALeu, tRNAGly, tRNAArg and tRNAPhe were decreased significantly while those of tRNAMet and tRNAHis were not affected in the mto1 strains carrying the PS allele. Strikingly, the combination of the mto1 and C1409G mutations gave rise to the synthetic phenotype for some of the tRNAs, especially in tRNALys, tRNAMet and tRNAPhe. Furthermore, the mto1 strains exhibited a marked reduction in the aminoacylation levels of mitochondrial tRNALys, tRNALeu, tRNAArg but almost no effect in those of tRNAHis. In addition, the steady-state levels of mitochondrial COX1, COX2, COX3, ATP6 and ATP9 mRNA were markedly decreased in mto1 strains. These data strongly indicate that unmodified tRNA caused by the deletion of MTO1 gene caused the instability of mitochondrial tRNAs and mRNAs and an impairment of aminoacylation of mitochondrial tRNAs. Consequently, the deletion of MTO1 gene acts in synergy with the 15S rRNA C1409G mutation, leading to the loss of COX1 synthesis and subsequent respiratory deficient phenotype.  相似文献   

11.
Three members of a collection of pBR322-yeast DNA recombinant plasmids containing yeast tRNA genes have been analyzed and sequenced. Each plasmid carries a single tRNA gene: pY44, tRNASer2; pY41, tRNAArg2; pY7, tRNAVal1. All three genes are intronless and terminate in a cluster of Ts in the non-coding strand. The sequence information here and previously determined sequences allow an extensive comparison of the regions flanking several yeast tRNA genes. This analysis has revealed novel features in tRNA gene arrangement. Blocks of homology in the flanking regions were found between the tRNA genes of an isoacceptor family but, more interestingly, also between genes coding for tRNAs of different amino-acid specificities. Particularly, three examples are discussed in which sequence elements in the neighborhood of different tRNA genes have been conserved to a high degree and over long distances.  相似文献   

12.
Many mammalian mitochondrial aminoacyl-tRNA synthetases are of bacterial-type and share structural domains with homologous bacterial enzymes of the same specificity. Despite this high similarity, synthetases from bacteria are known for their inability to aminoacylate mitochondrial tRNAs, while mitochondrial enzymes do aminoacylate bacterial tRNAs. Here, the reasons for non-aminoacylation by a bacterial enzyme of a mitochondrial tRNA have been explored. A mutagenic analysis performed on in vitro transcribed human mitochondrial tRNAAsp variants tested for their ability to become aspartylated by Escherichia coli aspartyl-tRNA synthetase, reveals that full conversion cannot be achieved on the basis of the currently established tRNA/synthetase recognition rules. Integration of the full set of aspartylation identity elements and stabilization of the structural tRNA scaffold by restoration of D- and T-loop interactions, enable only a partial gain in aspartylation efficiency. The sequence context and high structural instability of the mitochondrial tRNA are additional features hindering optimal adaptation of the tRNA to the bacterial enzyme. Our data support the hypothesis that non-aminoacylation of mitochondrial tRNAs by bacterial synthetases is linked to the large sequence and structural relaxation of the organelle encoded tRNAs, itself a consequence of the high rate of mitochondrial genome divergence.  相似文献   

13.
Total tRNA of Chlamydomonas reinhardii was fractionated by 2-dimensional gel electrophoresis. Sixteen tRNAs specific for eleven amino acids could be identified by aminoacylation with Escherichia coli tRNA synthetases. Hybridization of these tRNAs with chloroplast restriction fragments allowed for the localization of the genes of tRNATyr, tRNAPro, tRNAPhe (2 genes), tRNAIle (2 genes) and tRNAHis (2 genes) on the chloroplast genome of C. reinhardii. The genes for tRNAAla (2 genes), tRNAAsn and tRNALeu were mapped by using individual chloroplast tRNAs from higher plants as probes.  相似文献   

14.
15.
Total mammalian tRNAs contain on the average less than one mole of ribothymidine per mole of tRNA. Mammalian tRNAs can be grouped into at least four classes, depending upon their ribothymidine content at position 23 from the 3′ terminus. Class A contains tRNA in which a nucleoside other than uridine replaces ribothymidine (tRNAiMet); Class B contains tRNA in which one mole of a modified uridine (rT, ψ, or 2′-O-methylribothymidine) is found per mole of tRNA (tRNASer, tRNATrp, and tRNALys, respectively). Class C contains tRNA in which there is a partial conversion of uridine to ribothymidine (tRNAPhe, tRNA1Gly, tRNA2Gly); Class D contains tRNA which totally lacks ribothymidine (tRNAVal). Only those tRNAs in Class C are acceptable substrates for E.coli uridine methylase, under the conditions used in these studies. These observations cannot be adequately explained solely on the basis of the presence or absence of a specific “universal” nucleoside other than U or rT at position 23 from the 3′ terminus. However, correlations can be made between the ribothymidine and 5-methylcytosine content of eucaryotic tRNA. We postulate that the presence of one or more 5-methylcytosines in and adjacent to loop III (minor loop) in individual tRNAs act to regulate the amount of ribothymidine formed by uridine methylase. Several experiments are proposed as tests for this hypothesis.  相似文献   

16.
17.
Six of the eight transfer RNAs coded by bacteriophage T4 are synthesized via three dimeric precursor molecules. The sequences of two of these have been determined. Both of these precursors give rise to equimolar amounts of the cognate tRNA molecules in vivo. In contrast, even in wild-type infections, tRNAIle is present in ≤ 30% the amount of tRNAThr, with which it is processed from a common dimeric precursor.We have now determined the sequence of this dimer. In addition to the nucleotides present in tRNAThr and tRNAIle, it contains nine precursor-specific residues, located at the 5′ and 3′ termini and at the interstitial junction of the two tRNA sequences. While the three dimers share the majority of structural features in common, pre-tRNAThr + Ile is the only case in which an encoded tRNA 3′ -C-C-A terminus is present in the interstitial region.The processing of this dimer in various biosynthetic mutants has been analyzed in vivo and in vitro and shown to be anomalous in several respects. These results suggest that the apparent underproduction of tRNAIle can be explained by a novel processing pathway that generates a metabolically unstable tRNAIle product. Data from DNA sequence analysis of the T4 tRNA gene cluster (Fukada & Abelson, 1980) support the conclusion that the asymmetric maturation of this precursor is a consequence of the unique disposition of the -C-C-A sequence. These results argue that gene expression can be modulated at the level of RNA processing. The biological significance of this phenomenon is discussed in relation to evidence that tRNAIle has a unique physiological role.  相似文献   

18.
19.
Summary Eight transfer RNA (tRNA) genes which were previously mapped to five regions of the Pisum sativum (pea) chloroplast DNA (ctDNA) have been sequenced. They have been identified as tRNAVal(GAC), tRNAAsn(GUU), tRNAArg(ACG), tRNALeu(CAA), tRNATyr(GUA), tRNAGlu(UUC), tRNAHis(GUG), and tRNAArg(UCU) by their anticodons and by their similarity to other previously identified tRNA genes from the chloroplast DNAs of higher plants or from E. gracilis. In addition,two other tRNA genes, tRNAGly (UCC) and tRNAIle(GAU), have been partially sequenced. The tRNA genes are compared to other known chloroplast tRNA genes from higher plants and are found to be 90–100% homologous. In addition there are similarities in the overall arrangement of the individual genes between different plants. The 5 flanking regions and the internal sequences of tRNA genes have been studied for conserved regions and consensus sequences. Two unusual features have been found: there is an apparent intron in the D-loop of the tRNAGly(UCC), and the tRNAGlu(UUC) contains GATTC in its T-loop.  相似文献   

20.
Transfer RNA 5; Asn , tRNA ; His , and tRNAAla were isolated from Drosophila melanogaster by means of Sepharose 4B chromatography and 2-dimensional polyacrylamide gel electrophoresis. The tRNAs were iodinated in vitro with Na125I and hybridized in situ to salivary gland chromosomes from Drosophila. Subsequent autoradiography allowed the localization of the genes for tRNA 5; Asn in the regions 42A, 59F, 60C, and 84F; for tRNAHis in the regions 48F and 56E; and for tRNAAla in the regions 63A and 90C. From these and our previous results it can be concluded that the genes for the Q-base containing tRNAs (tRNAAsn, tRNAAsp, and tRNAHis, are not clustered in the Drosophila melanogaster genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号