首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dioscorea plants produce pharmaceutical diosgenin, which usually exists in plants in the form of saponins and has been a starting material for the production of steroids over seven decades. The first step of steroidal saponin biosynthesis from the corresponding aglycone is glycosylation by 3-O-sterol glycosyltransferase (S3GT), transferring the glycosyl from a sugar donor to the 3-OH position of the aglycone. In this study, a DzS3GT gene from Dioscorea zingiberensis was cloned and expressed in Escherichia coli, and the recombinant DzS3GT protein showed 3-O-sterol glycosyltransferase activity in vitro. Subcellular localization analysis revealed that the DzS3GT protein is located in the cytoplasm in rice protoplasts. The tissue profiles of DzS3GT differ from those reported SGT genes. DzS3GT is expressed strongly in leaves and very weakly in stems. The diosgenin 3-O-glucoside (trillin) content is much higher in the leaves than in other organs. The specificity of gene expression and saponins accumulation suggest that the biosynthesis of trillin may occur mainly in the leaves of D. zingiberensis. This is the first report of the cloning and biochemical characterization of a glycosyltransferase gene involved in the biosynthesis of diosgenin 3-O-glucoside in Dioscorea plants. In addition, the study provides a potential relevance to the biosynthesis and transport mechanism of steroidal saponins in Dioscorea plants.  相似文献   

2.
3.
4.
5.

Key message

This study identifies six UGT73Cs all able to glucosylate sapogenins at positions 3 and/or 28 which demonstrates that B. vulgaris has a much richer arsenal of UGTs involved in saponin biosynthesis than initially anticipated.

Abstract

The wild cruciferous plant Barbarea vulgaris is resistant to some insects due to accumulation of two monodesmosidic triterpenoid saponins, oleanolic acid 3-O-β-cellobioside and hederagenin 3-O-β-cellobioside. Insect resistance depends on the structure of the sapogenin aglycone and the glycosylation pattern. The B. vulgaris saponin profile is complex with at least 49 saponin-like metabolites, derived from eight sapogenins and including up to five monosaccharide units. Two B. vulgaris UDP-glycosyltransferases, UGT73C11 and UGT73C13, O-glucosylate sapogenins at positions 3 and 28, forming mainly 3-O-β-d-glucosides. The aim of this study was to identify UGTs responsible for the diverse saponin oligoglycoside moieties observed in B. vulgaris. Twenty UGT genes from the insect resistant genotype were selected and heterologously expressed in Nicotiana benthamiana and/or Escherichia coli. The extracts were screened for their ability to glycosylate sapogenins (oleanolic acid, hederagenin), the hormone 24-epibrassinolide and sapogenin monoglucosides (hederagenin and oleanolic acid 3-O-β-d-glucosides). Six UGTs from the UGT73C subfamily were able to glucosylate both sapogenins and both monoglucosides at positions 3 and/or 28. Some UGTs formed bisdesmosidic saponins efficiently. At least four UGT73C genes were localized in a tandem array with UGT73C11 and possibly UGT73C13. This organization most likely reflects duplication events followed by sub- and neofunctionalization. Indeed, signs of positive selection on several amino acid sites were identified and modelled to be localized on the UGT protein surface. This tandem array is proposed to initiate higher order bisdesmosidic glycosylation of B. vulgaris saponins, leading to the recently discovered saponin structural diversity, however, not directly to known cellobiosidic saponins.
  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
The plastidic thioredoxin F-type (TrxF) protein plays an important role in plant saccharide metabolism. In this study, a gene encoding the TrxF protein, named SlTrxF, was isolated from tomato. The coding region of SlTrxF was cloned into a binary vector under the control of 35S promoter and then transformed into Arabidopsis thaliana. The transgenic Arabidopsis plants exhibited increased starch accumulation compared to the wild-type (WT). Real-time quantitative PCR analysis showed that constitutive expression of SlTrxF up-regulated the expression of ADP-glucose pyrophosphorylase (AGPase) small subunit (AtAGPase-S1 and AtAGPase-S2), AGPase large subunit (AtAGPase-L1 and AtAGPase-L2) and soluble starch synthase (AtSSS I, AtSSS II, AtSSS III and AtSSS IV) genes involved in starch biosynthesis in the transgenic Arabidopsis plants. Meanwhile, enzymatic analyses showed that the major enzymes (AGPase and SSS) involved in the starch biosynthesis exhibited higher activities in the transgenic plants compared to WT. These results suggest that SlTrxF may improve starch content of Arabidopsis by regulating the expression of the related genes and increasing the activities of the major enzymes involved in starch biosynthesis.  相似文献   

14.
Panax ginseng and Panax quinquefolius of Panax genus are valuable as health foods as well as pharmaceuticals for the treatment of cancer, diabetes and ageing as these plants possess saponins. In the current study, Cell and adventitious root cultures of P. ginseng and P. quinquefolius were investigated for the biomass, cell division, saponin content and ginsenosides profile from four lines namely P. quinquefolius (AM), P. ginseng mountain (Mt.) Baekdu line, P. ginseng Cheong-sol line (CS) and P. ginseng CBN line (CBN) with the objective of comparing cell and adventitious root systems to check their efficacy for the production of ginseng saponins. Additionally, genes related to ginsenoside biosynthesis were also analyzed concerning to cell and adventitious root lines. The results indicated that various cell lines were better in multiplication and growth compared to adventitious root lines. However, adventitious root lines showed higher accumulation of dry biomass (1.5–2 fold) than that of cell lines. CS adventitious root line showed higher saponin content and ginsenoside productivity (10.48 mg·g?1 DW, 12.88 mg·L?1, respectively) than that of CS cell line (9.50 mg·g?1 DW, 2.39 mg·L?1, respectively). Especially, Rd ginsenoside productivity of CS adventitious root line recorded fourfold higher than CS cell line. Genes which are related to ginsenoside biosynthesis such as P. ginseng squalene synthase (PgSS2), P. ginseng squalene epoxidase (PgSE2), P. ginseng protopanaxadial synthase (PgPPDS) and P. ginseng protopanaxatriol synthase (PgPPTS) were analyzed by real time quantitative polymerase chain reaction to support ginsenoside production. The adventitious root culture system described in this study is useful system for biomass and ginsenoside production.  相似文献   

15.
16.
Steroidal saponins are widely distributed among monocots, including the Amaryllidaceae family to which the Allium genus is currently classified. Apart from sulfur compounds, these are important biologically active molecules that are considered to be responsible for the observed activity of Allium species, including antifungal, cytotoxic, enzyme-inhibitory, and other. In this paper, literature data concerning chemistry and biological activity of steroidal saponins from the Allium genus has been reviewed.  相似文献   

17.
Group A saponins are thought to be the cause of bitter and astringent tastes in processed foods of soybean (Glycine max), and the elimination of group A saponins is an important breeding objective. The group A saponins include two main Aa and Ab types, controlled by codominant alleles at the Sg-1 locus that is one of several key loci responsible for saponin biosynthesis in the subgenus Glycine soja. However, A0 mutant lacking group A saponin is a useful gene resource for soybean quality breeding. Here, eight Chinese wild soybean A0 accessions were sequenced to reveal the mutational mechanisms, and the results showed that these mutants were caused by at least three kinds of mechanisms involving four allelic variants (sg-10-b2, sg-10-b3, Sg-1b-0, and Sg-1b-01). The sg-10-b2 had two nucleotide deletions at positions +?72 and +?73 involving in the 24th and 25th amino acids. The sg-10-b3 contained a stop codon (TGA) at the 254th residue. The Sg-1b-0 and Sg-1b-01 were two novel A0-type mutants, which likely carried normal structural alleles, and nevertheless did not encode group A saponin due to unknown mutations beyond the normal coding regions. In addition, to reveal the structural features, allelic polymorphism, and mechanisms of the abiogenetic absence of group A (i.e., A0 phenotype), nucleotide sequence analysis was performed for the Sg-1 locus in wild soybean (Glycine soja). The results showed that Sg-1 alleles had a lower conservatism in the coding region; as high as 18 sequences were found in Chinese wild soybeans in addition to the Sg-1a (Aa) and Sg-1b (Ab) alleles. Sg-1a and Sg-1b alleles were characterized by eight synonymous codons and nine amino acid substitutions. Two evolutionarily transitional allelic sequences (Sg-1a7 and Sg-1b2) from Sg-1a toward Sg-1b were detected.  相似文献   

18.

Key message

pap1 - D/fls1ko double mutant plants that produce substantial amounts of anthocyanin show tolerance to abiotic stress.

Abstract

Anthocyanins are flavonoids that are abundant in various plants and have beneficial effects on both plants and humans. Many genes in flavonoid biosynthetic pathways have been identified, including those in the MYB-bHLH-WD40 (MBW) complex. The MYB gene Production of Anthocyanin Pigment 1 (PAP1) plays a particularly important role in anthocyanin accumulation. PAP1 expression in many plant systems strongly increases anthocyanin levels, resulting in a dark purple color in many plant organs. In this study, we generated double mutant plants that harbor fls1ko in the pap1-D background (i.e., pap1-D/fls1ko plants), to examine whether anthocyanins can be further enhanced by blocking flavonol biosynthesis under PAP1 overexpression. We also wanted to examine whether the increased anthocyanin levels contribute to defense against osmotic stresses. The pap1-D/fls1ko mutants accumulated higher anthocyanin levels than pap1-D plants in both control and sucrose-treated conditions. However, flavonoid biosynthesis genes were slightly down-regulated in the pap1-D/fls1ko seedlings as compared to their expression in pap1-D seedlings. We also report the performance of pap1-D/fls1ko seedlings in response to plant osmotic stresses.
  相似文献   

19.
The plastidic thioredoxin F-type (TrxF) protein plays an important role in plant carbohydrate metabolism biosynthesis. In this study, a gene encoding the TrxF protein, named GmTrxF, was isolated from soybean. The open reading frame (ORF) contained 540 nucleotides encoding 179 amino acids. The coding region of GmTrxF was cloned into a binary vector under the control of 35S promoter and then transformed into Arabidopsis. The starch content in GmTrxF expressing plants was increased by 57–109% compared to that in wild-type (WT). Real-time quantitative PCR (qRT-PCR) analysis showed that constitutive expression of GmTrxF up-regulated the expression of phosphoglucomutase (AtPGM), ADP-glucose pyrophosphorylase (AGPase) small subunit (AtAGPase-S1 and AtAGPase-S2), AGPase large subunit (AtAGPase-L1 and AtAGPase-L2) and soluble starch synthases (AtSSS I, AtSSS II, AtSSS III and AtSSS IV) genes involved in starch biosynthesis in the transgenic Arabidopsis plants. Meanwhile, enzymatic analyses showed that the major enzymes (AGPase and SSS) involved in the starch biosynthesis exhibited higher activities in the transgenic plants compared to WT. These results suggest that GmTrxF may improve starch content of Arabidopsis by up-regulating the expression of the related genes and increasing the activities of the major enzymes invovled in starch biosynthesis. The manipulation of GmTrxF expression might be used for increasing starch accumulation of plants in the future.  相似文献   

20.
Phalaenopsis species are among the most popular potted flowers for their fascinating flowers. When their whole-genome sequencing was completed, they have become useful for studying the molecular mechanism of anthocyanin biosynthesis. Here, we identified 49 candidate anthocyanin synthetic genes in the Phalaenopsis genome. Our results showed that duplication events might contribute to the expansion of some gene families, such as the genes encoding chalcone synthase (PeCHS), flavonoid 3′-hydroxylase (PeF3′H), and myeloblastosis (PeMYB). To elucidate their functions in anthocyanin biosynthesis, we conducted a global expression analysis. We found that anthocyanin synthesis occurred during the very early flower development stage and that the flavanone 3-hydroxylase (F3H), F3′H, and dihydroflavonol 4-reductase (DFR) genes played key roles in this process. Over-expression of Phalaenopsis flavonoid 3′,5′-hydroxylase (F3′5′H) in petunia showed that it had no function in anthocyanin production. Furthermore, global analysis of sequences and expression patterns show that the regulatory genes are relatively conserved and might be important in regulating anthocyanin synthesis through different combined expression patterns. To determine the functions of MYB2, 11, and 12, we over-expressed them in petunia and performed yeast two-hybrid analysis with anthocyanin (AN)1 and AN11. The MYB2 protein had strong activity in regulating anthocyanin biosynthesis and induced significant pigment accumulation in transgenic plant petals, whereas MYB11 and MYB12 had lower activities. Our work provided important improvement in the understanding of anthocyanin biosynthesis and established a foundation for floral colour breeding in Phalaenopsis through genetic engineering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号