首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dyneins are microtubule-based molecular motors involved in many different types of cell movement. Most dynein heavy chains (DHCs) clearly group into cytoplasmic or axonemal isoforms. However, DHC1b has been enigmatic. To learn more about this isoform, we isolated Chlamydomonas cDNA clones encoding a portion of DHC1b, and used these clones to identify a Chlamydomonas cell line with a deletion mutation in DHC1b. The mutant grows normally and appears to have a normal Golgi apparatus, but has very short flagella. The deletion also results in a massive redistribution of raft subunits from a peri-basal body pool (Cole, D.G., D.R. Diener, A.L. Himelblau, P.L. Beech, J.C. Fuster, and J.L. Rosenbaum. 1998. J. Cell Biol. 141:993–1008) to the flagella. Rafts are particles that normally move up and down the flagella in a process known as intraflagellar transport (IFT) (Kozminski, K.G., K.A. Johnson, P. Forscher, and J.L. Rosenbaum. 1993. Proc. Natl. Acad. Sci. USA. 90:5519–5523), which is essential for assembly and maintenance of flagella. The redistribution of raft subunits apparently occurs due to a defect in the retrograde component of IFT, suggesting that DHC1b is the motor for retrograde IFT. Consistent with this, Western blots indicate that DHC1b is present in the flagellum, predominantly in the detergent- and ATP-soluble fractions. These results indicate that DHC1b is a cytoplasmic dynein essential for flagellar assembly, probably because it is the motor for retrograde IFT.  相似文献   

2.
《The Journal of cell biology》1985,101(5):1903-1912
We have isolated a nucleus-basal body complex from Chlamydomonas reinhardtii. The complex is strongly immunoreactive to an antibody generated against a major protein constituent of isolated Tetraselmis striata flagellar roots (Salisbury, J. L., A. Baron, B. Surek, and M. Melkonian, J. Cell Biol., 99:962-970). Electrophoretic and immunoelectrophoretic analysis indicates that, like the Tetraselmis protein, the Chlamydomonas antigen consists of two acidic isoforms of approximately 20 kD. Indirect immunofluorescent staining of nucleus- basal body complexes reveals two major fibers in the connector region, one between each basal body and the nucleus. The nucleus is also strongly immunoreactive, with staining radiating around much of the nucleus from a region of greatest concentration at the connector pole. Calcium treatment causes shortening of the connector fibers and also movement of nuclear DNA towards the connector pole. Electron microscopic observation of negatively stained nucleus-basal body complexes reveals a cluster of approximately 6-nm filaments, suspected to represent the connector, between the basal bodies and nuclei. A mutant with a variable number of flagella, vfl-2-220, is defective with respect to the nucleus-basal body association. This observation encourages us to speculate that the nucleus-basal body union is important for accurate basal body localization within the cell and/or for accurate segregation of parental and daughter basal bodies at cell division. A physical association between nuclei and basal bodies or centrioles has been observed in a variety of algal, protozoan, and metazoan cells, although the nature of the association, in terms of both structure and function, has been obscure. We believe it likely that fibrous connectors homologous to those described here for Chlamydomonas are general features of centriole-bearing eucaryotic cells.  相似文献   

3.
A mutant, ndc10-1, was isolated by anti-tubulin staining of temperature- sensitive mutant banks of budding yeast. ndc10-1 has a defect chromosome segregation since chromosomes remains at one pole of the anaphase spindle. This produces one polyploid cell and one aploid cell, each containing a spindle pole body (SPD. NDC10 was cloned and sequenced and is identical to CBF2 (Jiang, W., J. Lechnermn and J. Carbon. 1993. J. Cell Biol. 121:513) which is the 110-kD component of a centromere DNA binding complex (Lechner, J., and J. Carbon. 1991. Cell. 61:717-725). NDC10 is an essential gene. Antibodies to Ndc10p labeled the SPB region in nearly all the cells examined including nonmitotic cells. In some cells with short spindles which may be in metaphase, staining was also observed along the spindle. The staining pattern and the phenotype of ndc10-1 are consistent with Cbf2p/Ndc10p being a kinetochore protein, and provide in vivo evidence for its role in the attachment of chromosomes to the spindle.  相似文献   

4.
We used an improved procedure to analyze the intraflagellar transport (IFT) of protein particles in Chlamydomonas and found that the frequency of the particles, not only the velocity, changes at each end of the flagella. Thus, particles undergo structural remodeling at both flagellar locations. Therefore, we propose that the IFT consists of a cycle composed of at least four phases: phases II and IV, in which particles undergo anterograde and retrograde transport, respectively, and phases I and III, in which particles are remodeled/exchanged at the proximal and distal end of the flagellum, respectively. In support of our model, we also identified 13 distinct mutants of flagellar assembly (fla), each defective in one or two consecutive phases of the IFT cycle. The phase I-II mutant fla10-1 revealed that cytoplasmic dynein requires the function of kinesin II to participate in the cycle. Phase I and II mutants accumulate complex A, a particle component, near the basal bodies. In contrast, phase III and IV mutants accumulate complex B, a second particle component, in flagellar bulges. Thus, fla mutations affect the function of each complex at different phases of the cycle.  相似文献   

5.
cmu1-1 is a new mutation of Chlamydomonas reinhardtii that causes a change in cell shape due to an alteration of cytoplasmic microtubule organization. cmu1 mutant cells were first identified based on their altered cell shape. Unlike wild-type cells, which are ellipsoid, cmu1 cells tend to be either round or egg-shaped with the flagella extending from the narrow end of the cell. Electron microscopic comparison of mutant and wild-type cells indicated that microtubule distribution was altered in the mutant cells. Immunofluorescence microscopy using anti-beta-tubulin antibodies revealed that, in wild-type cells, microtubules arise from the anterior end of the cell in the region of the basal bodies, pass posteriorly subjacent to the plasma membrane, and terminate near the posterior end of the cell. In mutant cells, the microtubules also arise from the basal body region but then become disarrayed. They frequently curl back anteriorly or wrap around the equator of the cell; some microtubules also extend completely to the posterior end of the cell, then turn back toward the anterior end. No changes in the basal body region were detected by electron microscopy. Some cmu1 cells had multiple nuclei or an aberrant number of flagella, both of which may be due to defects in cell division, a process dependent upon microtubules. Thus, cmu1-1, which was generated by insertional mutagenesis and is tagged, appears to encode a protein that plays an essential role in the spatial organization of cytoplasmic microtubules involved in both interphase and mitotic functions.  相似文献   

6.
7.
We previously described a kinesin-dependent movement of particles in the flagella of Chlamydomonas reinhardtii called intraflagellar transport (IFT) (Kozminski, K.G., K.A. Johnson, P. Forscher, and J.L. Rosenbaum. 1993. Proc. Natl. Acad. Sci. USA. 90:5519–5523). When IFT is inhibited by inactivation of a kinesin, FLA10, in the temperature-sensitive mutant, fla10, existing flagella resorb and new flagella cannot be assembled. We report here that: (a) the IFT-associated FLA10 protein is a subunit of a heterotrimeric kinesin; (b) IFT particles are composed of 15 polypeptides comprising two large complexes; (c) the FLA10 kinesin-II and IFT particle polypeptides, in addition to being found in flagella, are highly concentrated around the flagellar basal bodies; and, (d) mutations affecting homologs of two of the IFT particle polypeptides in Caenorhabditis elegans result in defects in the sensory cilia located on the dendritic processes of sensory neurons. In the accompanying report by Pazour, G.J., C.G. Wilkerson, and G.B. Witman (1998. J. Cell Biol. 141:979–992), a Chlamydomonas mutant (fla14) is described in which only the retrograde transport of IFT particles is disrupted, resulting in assembly-defective flagella filled with an excess of IFT particles. This microtubule- dependent transport process, IFT, defined by mutants in both the anterograde (fla10) and retrograde (fla14) transport of isolable particles, is probably essential for the maintenance and assembly of all eukaryotic motile flagella and nonmotile sensory cilia.  相似文献   

8.
Modulation of yeast Sln1 kinase activity by the CCW12 cell wall protein   总被引:1,自引:0,他引:1  
The yeast Sln1p sensor kinase is best known as an osmosensor involved in the regulation of the hyperosmolarity glycerol mitogen-activated protein kinase cascade. Down-regulation of Sln1 kinase activity occurs under hypertonic conditions and leads to phosphorylation of the Hog1p mitogen-activated protein kinase and increased osmotic stress-response gene expression. Conditions leading to kinase up-regulation include osmotic imbalance caused by glycerol retention in the glycerol channel mutant, fps1 (Tao, W., Deschenes, R. J., and Fassler, J. S. (1999) J. Biol. Chem. 274, 360-367). The hypothesis that Sln1p kinase activity is responsive to turgor was first suggested by the increased Sln1p kinase activity in mutants lacking Fps1p in which glycerol accumulation leads to water uptake. Also consistent with the turgor hypothesis is the observation that reduced turgor caused by treatment of cells with nystatin, a drug that increases membrane permeability and causes cell shrinkage, reduced Sln1p kinase activity (Tao, W., Deschenes, R. J., and Fassler, J. S. (1999) J. Biol. Chem. 274, 360-367; Reiser, V., Raitt, D. C., and Saito, H. (2003) J. Cell Biol. 161, 1035-1040). The turgor hypothesis is revisited here in the context of the identification and characterization of the cell wall gene, CCW12, as a determinant of Sln1p activity. Results of this analysis suggest that the activity of the plasma membrane localized Sln1p is affected by the presence or absence of specific outer cell wall proteins and that this effect is independent of turgor.  相似文献   

9.
Peb1 is a peroxisome biogenesis mutant isolated in Saccharomyces cerevisiae that is selectively defective in the import of thiolase into peroxisomes but has a normal ability to package catalase, luciferase and acyl-CoA oxidase (Zhang, J. W., C. Luckey, and P. B. Lazarow. 1993. Mol. Biol. Cell. 4:1351-1359). Thiolase differs from these other peroxisomal proteins in that it is targeted by an NH2-terminal, 16- amino acid peroxisomal targeting sequence type 2 (PTS 2). This phenotype suggests that the PEB1 protein might function as a receptor for the PTS2. The PEB1 gene has been cloned by functional complementation. It encodes a 42,320-D, hydrophilic protein with no predicted transmembrane segment. It contains six WD repeats that comprise the entire protein except for the first 55 amino acids. Peb1p was tagged with hemagglutinin epitopes and determined to be exclusively within peroxisomes by digitonin permeabilization, immunofluorescence, protease protection and immuno-electron microscopy (Zhang, J. W., and P. B. Lazarow. 1995. J. Cell Biol. 129:65-80). Peb1p is identical to Pas7p (Marzioch, M., R. Erdmann, M. Veenhuis, and W.-H. Kunau. 1994. EMBO J. 13: 4908-4917). We have now tested whether Peb1p interacts with the PTS2 of thiolase. With the two-hybrid assay, we observed a strong interaction between Peb1p and thiolase that was abolished by deleting the first 16 amino acids of thiolase. An oligopeptide consisting of the first 16 amino acids of thiolase was sufficient for the affinity binding of Peb1p. Binding was reduced by the replacement of leucine with arginine at residue five, a change that is known to reduce thiolase targeting in vivo. Finally, a thiolase-Peb1p complex was isolated by immunoprecipitation. To investigate the topogenesis of Peb1p, its first 56-amino acid residues were fused in front of truncated thiolase lacking the NH2-terminal 16-amino acid PTS2. The fusion protein was expressed in a thiolase knockout strain. Equilibrium density centrifugation and immunofluorescence indicated that the fusion protein was located in peroxisomes. Deletion of residues 6-55 from native Peb1p resulted in a cytosolic location and the loss of function. Thus the NH2-terminal 56-amino acid residues of Peb1p are necessary and sufficient for peroxisomal targeting. Peb1p is found in peroxisomes whether thiolase is expressed or not. These results suggest that Peb1p (Pas7p) is an intraperoxisomal receptor for the type 2 peroxisomal targeting signal.  相似文献   

10.
Intraflagellar transport (IFT) is a motility in which particles composed of at least 17 polypeptides move underneath the flagellar membrane. Anterograde (outward) and retrograde (inward) movements of these IFT particles are mediated by FLA10 kinesin-II and cytoplasmic dynein DHC1b, respectively. Mutations affecting IFT particle polypeptides or motors result in the inability to assemble flagella. IFT particles and the motors moving them are located principally around the basal bodies as well as in the flagella. Here, we clone the cDNA encoding one of the IFT particle proteins, IFT52, and show by immunofluorescence that while some IFT52 is in the flagella, the majority is found in two horseshoe-shaped rings around the basal bodies. Immunoelectron microscopy indicates that IFT52 is associated with the periphery of the transitional fibers, which extend from the distal portion of the basal body to the cell membrane and demarcate the entrance to the flagellar compartment. This localization suggests that the transitional fibers form a docking complex for the IFT particles destined for the flagellum. Finally, the flagellaless mutant bld1 completely lacks IFT52 due to a deletion in the gene encoding IFT52.  相似文献   

11.
A microtubule-based transport of protein complexes, which is bidirectional and occurs between the space surrounding the basal bodies and the distal part of Chlamydomonas flagella, is referred to as intraflagellar transport (IFT). The IFT involves molecular motors and particles that consist of 17S protein complexes. To identify the function of different components of the IFT machinery, we isolated and characterized four temperature-sensitive (ts) mutants of flagellar assembly that represent the loci FLA15, FLA16, and FLA17. These mutants were selected among other ts mutants of flagellar assembly because they displayed a characteristic bulge of the flagellar membrane as a nonconditional phenotype. Each of these mutants was significantly defective for the retrograde velocity of particles and the frequency of bidirectional transport but not for the anterograde velocity of particles, as revealed by a novel method of analysis of IFT that allows tracking of single particles in a sequence of video images. Furthermore, each mutant was defective for the same four subunits of a 17S complex that was identified earlier as the IFT complex A. The occurrence of the same set of phenotypes, as the result of a mutation in any one of three loci, suggests the hypothesis that complex A is a portion of the IFT particles specifically involved in retrograde intraflagellar movement.  相似文献   

12.
How centrioles and basal bodies assemble is a long-standing puzzle in cell biology. To address this problem, we analyzed a novel basal body-defective Chlamydomonas reinhardtii mutant isolated from a collection of flagella-less mutants. This mutant, bld10, displayed disorganized mitotic spindles and cytoplasmic microtubules, resulting in abnormal cell division and slow growth. Electron microscopic observation suggested that bld10 cells totally lack basal bodies. The product of the BLD10 gene (Bld10p) was found to be a novel coiled-coil protein of 170 kD. Immunoelectron microscopy localizes Bld10p to the cartwheel, a structure with ninefold rotational symmetry positioned near the proximal end of the basal bodies. Because the cartwheel forms the base from which the triplet microtubules elongate, we suggest that Bld10p plays an essential role in an early stage of basal body assembly. A viable mutant having such a severe basal body defect emphasizes the usefulness of Chlamydomonas in studying the mechanism of basal body/centriole assembly by using a variety of mutants.  相似文献   

13.
Mutations in the UNI2 locus in Chlamydomonas reinhardtii result in a "uniflagellar" phenotype in which flagellar assembly occurs preferentially from the older basal body and ultrastructural defects reside in the transition zones. The UNI2 gene encodes a protein of 134 kDa that shares 20.5% homology with a human protein. Immunofluorescence microscopy localized the protein on both basal bodies and probasal bodies. The protein is present as at least two molecular-weight variants that can be converted to a single form with phosphatase treatment. Synthesis of Uni2 protein is induced during cell division cycles; accumulation of the phosphorylated form coincides with assembly of transition zones and flagella at the end of the division cycle. Using the Uni2 protein as a cell cycle marker of basal bodies, we observed migration of basal bodies before flagellar resorption in some cells, indicating that flagellar resorption is not required for mitotic progression. We observed the sequential assembly of new probasal bodies beginning at prophase. The uni2 mutants may be defective in the pathways leading to flagellar assembly and to basal body maturation.  相似文献   

14.
KAR1 has been identified as an essential gene which is involved in karyogamy of mating yeast cells and in spindle pole body duplication of mitotic cells (Rose, M. D., and G. R. Fink. 1987. Cell. 48:1047-1060). We investigated the cell cycle-dependent localization of the Kar1 protein (Kar1p) and its interaction with other SPB components. Kar1p is associated with the spindle pole body during the entire cell cycle of yeast. Immunoelectron microscopic studies with anti-Kar1p antibodies or with the monoclonal antibody 12CA5 using an epitope-tagged, functional Kar1p revealed that Kar1p is associated with the half bridge or the bridge of the spindle pole body. Cdc31p, a Ca(2+)-binding protein, was previously identified as the first component of the half bridge of the spindle pole body (Spang, A., I. Courtney, U. Fackler, M. Matzner, and E. Schiebel. 1993. J. Cell Biol. 123:405-416). Using an in vitro assay we demonstrate that Cdc31p specifically interacts with a short sequence within the carboxyl terminal half of Kar1p. The potential Cdc31p- binding sequence of Kar1p contains three acidic amino acids which are not found in calmodulin-binding peptides, explaining the different substrate specificities of Cdc31p and calmodulin. Cdc31p was also able to bind to the carboxy terminus of Nuflp/Spc110p, another component of the SPB (Kilmartin, J. V., S. L. Dyos, D. Kershaw, and J. T. Finch. 1993. J. Cell Biol. 123:1175-1184). The association of Kar1p with the spindle pole body was independent of Cdc31p. Cdc31p, on the other hand, was not associated with SPBs of kar1 cells.  相似文献   

15.
EA Richey  H Qin 《PloS one》2012,7(8):e43118
Intraflagellar transport (IFT), the key mechanism for ciliogenesis, involves large protein particles moving bi-directionally along the entire ciliary length. IFT particles contain two large protein complexes, A and B, which are constructed with proteins in a core and several peripheral proteins. Prior studies have shown that in Chlamydomonas reinhardtii, IFT46, IFT52, and IFT88 directly interact with each other and are in a subcomplex of the IFT B core. However, ift46, bld1, and ift88 mutants differ in phenotype as ift46 mutants are able to form short flagella, while the other two lack flagella completely. In this study, we investigated the functional differences of these individual IFT proteins contributing to complex B assembly, stability, and basal body localization. We found that complex B is completely disrupted in bld1 mutant, indicating an essential role of IFT52 for complex B core assembly. Ift46 mutant cells are capable of assembling a relatively intact complex B, but such complex is highly unstable and prone to degradation. In contrast, in ift88 mutant cells the complex B core still assembles and remains stable, but the peripheral proteins no longer attach to the B core. Moreover, in ift88 mutant cells, while complex A and the anterograde IFT motor FLA10 are localized normally to the transition fibers, complex B proteins instead are accumulated at the proximal ends of the basal bodies. In addition, in bld2 mutant, the IFT complex B proteins still localize to the proximal ends of defective centrioles which completely lack transition fibers. Taken together, these results revealed a step-wise assembly process for complex B, and showed that the complex first localizes to the proximal end of the centrioles and then translocates onto the transition fibers via an IFT88-dependent mechanism.  相似文献   

16.
Ciliary membranes have a large repertoire of receptors and ion channels that act to transduce information from the environment to the cell. Chlamydomonas offers a tractable system for dissecting the transport and function of ciliary and flagellar membrane proteins. Isolation of ergosterol and sphingolipid-enriched Chlamydomonas flagellar membrane domains identified potential signaling molecules by mass spectroscopy. These include a membrane protein and a matrix flavodoxin protein that are encoded by the AGG2 and AGG3 genes, respectively. Agg2p localizes to the proximal flagellar membrane near the basal bodies. Agg3p is distributed throughout the flagellar matrix, with an increased concentration in the proximal regions where Agg2p is located. Chlamydomonas cells sense light by using a microbial-type rhodopsin , transduce a signal from the cell body to the flagella, and alter the waveform of the flagella to turn a cell toward the light. Protein depletion by RNA interference reveals that both AGG gene products play roles in the orientation of cells to a directional light source. The depleted strains mimic the phenotype of the previously identified agg1 mutant, which swims away from light. We propose that the localization of Agg2p and Agg3p to the proximal region of the flagella may be important for interpreting light signals.  相似文献   

17.
Although vegetative cells, gametes, and zygotes of the biflagellated alga Chlamydomonas bear flagella, only the flagella of mt+ and mt- gametes are adhesive. The molecules responsible for adhesiveness, mt+ and mt- agglutinins, are long rod-shaped glycoproteins displayed on the flagellar membrane. These flagellar agglutinins, which gametes use both as adhesion and signaling molecules during the early events of fertilization, are lost from the flagella during adhesion. Flagellar adhesiveness can be maintained, however, by recruitment and activation of preexisting, inactive agglutinins from the plasma membrane of the cell body (Hunnicutt et al, 1990, J. Cell Biol. 111, 1605-1616) unless the gametes of opposite mating types fuse to form zygotes. Upon cell fusion, flagellar adhesiveness is lost. In the studies presented here, we have employed an in vitro bioassay to measure agglutinins in both cell bodies and flagella at various times during gametogenesis, during fertilization, and after zygote-formation. By use of the bioassay, which can detect agglutinins that are functionally inactive in vivo, we found that vegetative cells are devoid of agglutinins. These adhesion molecules appear only after gametogenesis is underway with the cell body agglutinins appearing first and then the flagellar agglutinins. Surprisingly, 30 min after zygote formation, when the zygotes' flagella are no longer adhesive, the flagellar agglutinin activity detectable with the bioassay remains high. One interpretation of these results is that zygotes continue to recruit agglutinins from the cell body to the flagella, but cell fusion abrogates activation of the agglutinins. Within 45-90 min after fusion both the cell body and flagellar agglutinins are lost and can be detected in the medium. These mechanisms, which render the zygotes nonadhesive to other zygotes and unmated gametes, contribute to the Chlamydomonas equivalent of a block to polyspermy.  相似文献   

18.
The Saccharomyces cerevisiae genes KAR1 and CDC31 are required for the initial stages of spindle pole body (SPB) duplication in yeast. The Cdc31 protein is most related to caltractin/centrin, a calcium-binding protein present in microtubule organizing centers in many organisms. Because of a variety of genetic interactions between CDC31 and KAR1 (Vallen, E. A., W. Ho. M. Winey, and M. D. Rose. 1994. Genetics. In press), we wanted to determine whether Cdc31p and Kar1p physically interact. Cdc31p was expressed and purified from Escherichia coli and active for binding calcium. Using a protein blotting technique, Cdc31p bound to Kar1p in vitro via an essential domain in Kar1p required for SPB duplication (Vallen, E. A., M. A. Hiller, T. Y. Scherson, and M. D. Rose. 1992a. J. Cell Biol. 117:1277-1287). By immunofluorescence microscopy, we determined that the interaction also occurs in vivo. Cdc31p was localized to the SPB in wild-type cells but was mislocalized in a kar1 mutant strain. In a kar1 mutant containing a dominant CDC31 suppressor, Cdc31p was again localized to the SPB. Furthermore, the localization of Cdc31p to the SPB was affected by the overexpression of Kar1p-beta-galactosidase hybrids. Based on these data, we propose that the essential function of Kar1p is to localize Cdc31p to the SPB, and that this interaction is normally required for SPB duplication.  相似文献   

19.
We have previously described mutant S. cerevisiae that are defective in peroxisome biogenesis (peb mutants) (Zhang, J. W., Y. Han, and P. B. Lazarow. 1993. J. Cell Biol. 123:1133-1147.). In some mutants, peroxisomes are undetectable. Other mutants contain normal-looking peroxisomes but fail to package subsets of peroxisomal proteins into the organelle (Zhang, J. W., C. Luckey, and P. B. Lazarow. 1993. Mol. Biol. Cell. 4:1351-1359.). In peb1 (pas7) cells, for example, the peroxisomes contain proteins that are targeted by COOH-terminal tripeptides and contain acyl-CoA oxidase (which is probably targeted by internal oligopeptides), but fail to import thiolase (which is targeted by an NH(2)-terminal 16-amino acid sequence). These and other data suggest that there are three branches in the pathway for the import of proteins into peroxisomes, each of which contains a receptor for one type of peroxisomal topogenic information. Here, we report the cloning and characterization of the PEB1 gene, that encodes a 42,320-Da hydrophilic protein with no predicted transmembrane segment. The protein contains six WD repeats, a motif which has been found in 27 proteins involved in diverse cellular functions. The PEB1 gene product was tagged with the hemagglutinin epitope and found to rescue thiolase import in the peb1 null mutant. The epitope-tagged protein was shown to be inside of peroxisomes by immunofluorescence, digitonin permeabilization, equilibrium density centrifugation, immunoelectron microscopy, and proteinase K protection studies. The PEB1 gene product does not cleave the thiolase-targeting sequence. It may function to draw thiolase into peroxisomes.  相似文献   

20.
Cilia/flagella are evolutionarily conserved cellular organelles. In this study, we demonstrated that Dunaliella salina Peroxiredoxin 1 (DsPrdx1) localized to the flagella and basal bodies, and was involved in flagellar disassembly. The link between DsPrdx1 and flagella of Dunaliella salina (D. salina) encouraged us to explore the function of its human homologue, Homo sapiens Peroxiredoxin 1 (HsPrdx1) in development and physiology. Our results showed that HsPrdx1 was overexpressed, and cilia were lost in esophageal squamous cell carcinoma (ESCC) cells compared with the non-cancerous esophageal epithelial cells Het-1A. Furthermore, when HsPrdx1 was knocked down by short hairpin RNA (shRNA) lentivirus in ESCC cells, the phenotype of cilia lost can be reversed, and the expression levels of tumor suppressor genes LKB1 and p-AMPK were increased, and the activity of the oncogene Aurora A was inhibited compared with those in cells transfected with scrambe-shRNA lentivirus. These findings firstly showed that Prdx1 is involved in disassembly of flagella and cilia, and suggested that the abnormal expression of the cilia-related gene including Prdx1 may affect both ciliogenesis and cancernogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号