首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
The 1.85 A crystal structure of endonuclease III, combined with mutational analysis, suggests the structural basis for the DNA binding and catalytic activity of the enzyme. Helix-hairpin-helix (HhH) and [4Fe-4S] cluster loop (FCL) motifs, which we have named for their secondary structure, bracket the cleft separating the two alpha-helical domains of the enzyme. These two novel DNA binding motifs and the solvent-filled pocket in the cleft between them all lie within a positively charged and sequence-conserved surface region. Lys120 and Asp138, both shown by mutagenesis to be catalytically important, lie at the mouth of this pocket, suggesting that this pocket is part of the active site. The positions of the HhH motif and protruding FCL motif, which contains the DNA binding residue Lys191, can accommodate B-form DNA, with a flipped-out base bound within the active site pocket. The identification of HhH and FCL sequence patterns in other DNA binding proteins suggests that these motifs may be a recurrent structural theme for DNA binding proteins.  相似文献   

7.
8.
The single-stranded DNA (ssDNA) cytidine deaminase APOBEC3F (A3F) deaminates cytosine (C) to uracil (U) and is a known restriction factor of HIV-1. Its C-terminal catalytic domain (CD2) alone is capable of binding single-stranded nucleic acids and is important for deamination. However, little is known about how the CD2 interacts with ssDNA. Here we report a crystal structure of A3F-CD2 in complex with a 10-nucleotide ssDNA composed of poly-thymine, which reveals a novel positively charged nucleic acid binding site distal to the active center that plays a key role in substrate DNA binding and catalytic activity. Lysine and tyrosine residues within this binding site interact with the ssDNA, and mutating these residues dramatically impairs both ssDNA binding and catalytic activity. This binding site is not conserved in APOBEC3G (A3G), which may explain differences in ssDNA-binding characteristics between A3F-CD2 and A3G-CD2. In addition, we observed an alternative Zn-coordination conformation around the active center. These findings reveal the structural relationships between nucleic acid interactions and catalytic activity of A3F.  相似文献   

9.
TFIIIA and homologous genes. The ''finger'' proteins.   总被引:21,自引:6,他引:15       下载免费PDF全文
  相似文献   

10.
Binding of CC-1065 to poly- and oligonucleotides   总被引:3,自引:0,他引:3  
The binding of the antitumor agent CC-1065 to a variety of poly- and oligonucleotides was studied by electronic absorption, CD, and resistance to removal by Sephadex column chromatography. Competitive binding experiments between CC-1065 and netropsin were carried out with calf-thymus DNA, poly(dI-dC) · poly(dI-dC), poly(dI) · poly(dC), poly(rA) · poly(dT), poly(dA- dC) · poly(dG-dT), and poly(dA) · 2poly(dT). CC-1065 binds to polynucleotides by three mechanisms. In the first, CC-1065 binds only weakly, as judged by the induction of zero or very weak CD spectra and low resistance to extraction of drug from the polynucleotide by Sephadex chromatography. In the second and third mechanisms, CC-1065 binds strongly, as judged by the induction of two distinct, intense CD spectra and high resistance to extraction of drug from the polynucleotide, by Sephadex chromatography in both cases. The species bound by the second mechanism converts to that bound by the third mechanism with varying kinetics, which depend both on the base-pair sequence and composition of the polynucleotide. Competitive binding experiments with netropsin show that CC-1065 binds strongly in the minor groove of DNA by the second and third mechanisms of binding. Netropsin can displace CC-1065 that is bound by the second mechanism but not that bound by the third mechanism. CC-1065 binds preferentially to B-form duplex DNA and weakly (by the first binding mechanism) or not at all to RNA, DNA, and RNA–DNA polynucleotides which adopt the A-form conformation or to single-strand DNA. This correlation of strong binding of CC-1065 to B-form duplex DNA is consistent with x-ray data, which suggest an anomalous structure for poly(dI) · poly(rC), as compared with poly(rI) · poly(dC) (A-form) and poly(dI) · poly(dC) (B-form). The binding data indicate that poly(rA) · poly(dU) takes the B-form secondary structure like poly(rA) · poly(dT). Triple-stranded poly(dA) · 2poly(dT) and poly(dA) · 2poly(dU), which are considered to adopt the A-form conformation, bind CC-1065 strongly. Netropsin, which also shows a binding preference for B-form polynucleotides, also binds to poly(dA) · 2poly(dT) and occupies the same binding site as CC-1065. These binding studies are consistent with results of x-ray studies, which suggest that A-form triplex DNA retains some structural features of B-form DNA that are not present in A-form duplex DNA; i.e., the axial rise per nucleotide and the base tilt. Triple-stranded poly(dA) · 2poly(rU) does not bind CC-1065 strongly but has nearly the same conformation as poly(dA) · 2poly(dT) based on x-ray analysis. This suggests that the 2′-OH group of the poly(rU) strands interferes with CC-1065 binding to this polynucleotide. The same type of interference may occur for other RNA and DNA–RNA polynucleotides that bind CC-1065 weakly.  相似文献   

11.
Conformational analysis of d(C3G3), a B-family duplex in solution   总被引:2,自引:0,他引:2  
NMR and circular dichroism studies of the duplex formed by the self-complementary DNA hexanucleotide d(C3G3) indicate that it is a B-type structure but differs from standard B-form. An analysis of NMR coupling constants within the deoxyribose moieties yields a 70% or greater contribution from pseudorotation phase angles corresponding to the C3'-exo conformation, a conformation similar to the C2'-endo conformation associated with B-form DNA. Intranucleotide interproton distances are consistent with a B-form structure, but some internucleotide distances are intermediate between A- and B-form structures. Circular dichroism spectra have B-form characteristics but also include an unusual negative band at 282 nm. The solution spectroscopic results are in contrast with X-ray crystallographic studies which find A-form structures for similar sequences.  相似文献   

12.
Leveraging structural biology tools, we report the results of experiments seeking to determine if the different mechanical properties of DNA polymers with base analog substitutions can be attributed, at least in part, to induced changes from classical B-form DNA. The underlying hypothesis is that different inherent bending and twisting flexibilities may characterize non-canonical B-DNA, so that it is inappropriate to interpret mechanical changes caused by base analog substitution as resulting simply from ‘electrostatic’ or ‘base stacking’ influences without considering the larger context of altered helical geometry. Circular dichroism spectra of inosine-substituted oligonucleotides and longer base-substituted DNAs in solution indicated non-canonical helical conformations, with the degree of deviation from a standard B-form geometry depending on the number of I?C pairs. X-ray diffraction of a highly inosine-substituted DNA decamer crystal (eight I?C and two A?T pairs) revealed an A-tract-like conformation with a uniformly narrow minor groove, reduced helical rise, and the majority of sugars adopting a C1′-exo (southeastern) conformation. This contrasts with the standard B-DNA geometry with C2′-endo sugar puckers (south conformation). In contrast, the crystal structure of a decamer with only four I?C pairs has a geometry similar to that of the reference duplex with eight G?C and two A?T pairs. The unique crystal geometry of the inosine-rich duplex is noteworthy given its unusual CD signature in solution and the altered mechanical properties of some inosine-containing DNAs.  相似文献   

13.
14.
15.
Bifunctional DNA alkylating agents form a diverse assortment of covalent DNA interstrand cross-linked (ICL) structures that are potent cytotoxins. Because it is implausible that cells could possess distinct DNA repair systems for each individual ICL, it is believed that common structural and dynamic features of ICL damage are recognized, rather than specific structural characteristics of each cross-linking agent. Investigation of the structural and dynamic properties of ICLs that might be important for recognition has been complicated by heterogeneous incorporation of these lesions into DNA. To address this problem, we have synthesized and characterized several homogeneous ICL DNAs containing site-specific staggered N4-cytosine-ethyl-N4-cytosine cross-links. Staggered cross-links were introduced in two ways, in a manner that preserves the overall structure of B-form duplex DNA and in a manner that highly distorts the DNA structure, with the goal of understanding how structural and dynamic properties of diverse ICL duplexes might flag these sites for repair. Measurements of base pair opening dynamics in the B-form ICL duplex by (1)H NMR line width or imino proton solvent exchange showed that the guanine base opposite the cross-linked cytosine opened at least 1 order of magnitude more slowly than when in a control matched normal duplex. To a lesser degree, the B-form ICL also induced a decrease in base pair opening dynamics that extended from the site of the cross-link to adjacent base pairs. In contrast, the non-B-form ICL showed extensive conformational dynamics at the site of the cross-link, which extended over the entire DNA sequence. Because DNA duplexes containing the B-form and non-B-form ICL cross-links have both been shown to be incised when incubated in mammalian whole cell extracts, while a matched normal duplex is not, we conclude that intrinsic DNA dynamics is not a requirement for specific damage incision of these ICLs. Instead, we propose a general model in which destabilized ICL duplexes serve to energetically facilitate binding of DNA repair factors that must induce bubbles or other distortions in the duplex. However, the essential requirement for incision is an immobile Y-junction where the repair factors are stably bound at the site of the ICL, and the two DNA strands are unpaired.  相似文献   

16.
17.
An asymmetric NFAT1 dimer on a pseudo-palindromic kappa B-like DNA site   总被引:1,自引:0,他引:1  
The crystal structure of the NFAT1 Rel homology region (RHR) bound to a pseudo-palindromic DNA site reveals an asymmetric dimer interaction between the RHR-C domains, unrelated to the contact seen in Rel dimers such as NF kappa B. Binding studies with a form of the NFAT1 RHR defective in the dimer contact show loss of cooperativity and demonstrate that the same interaction is present in solution. The structure we have determined may correspond to a functional NFAT binding mode at palindromic sites of genes induced during the anergic response to weak TCR signaling.  相似文献   

18.
RNA and DNA binding zinc fingers in Xenopus TFIIIA.   总被引:4,自引:0,他引:4  
O Theunissen  F Rudt  U Guddat  H Mentzel  T Pieler 《Cell》1992,71(4):679-690
  相似文献   

19.
The accuracy of DNA replication results from both the intrinsic DNA polymerase fidelity and the DNA sequence. Although the recent structural studies on polymerases have brought new insights on polymerase fidelity, the role of DNA sequence and structure is less well understood. Here, the analysis of the crystal structures of hotspots for polymerase slippage including (CA)n and (A)n tracts in different intermolecular contexts reveals that, in the B-form, these sequences share common structural alterations which may explain the high rate of replication errors. In particular, a two-faced "Janus-like" structure with shifted base-pairs in the major groove but an apparent normal geometry in the minor groove constitutes a molecular decoy specifically suitable to mislead the polymerases. A model of the rat polymerase beta bound to this structure suggests that an altered conformation of the nascent template-primer duplex can interfere with correct nucleotide incorporation by affecting the geometry of the active site and breaking the rules of base-pairing, while at the same time escaping enzymatic mechanisms of error discrimination which scan for the correct geometry of the minor groove.In contrast, by showing that the A-form greatly attenuates the sequence-dependent structural alterations in hotspots, this study suggests that the A-conformation of the nascent template-primer duplex at the vicinity of the polymerase active site will contribute to fidelity. The A-form may play the role of a structural buffer which preserves the correct geometry of the active site for all sequences. The detailed comparison of the conformation of the nascent template-primer duplex in the available crystal structures of DNA polymerase-DNA complexes shows that polymerase beta, the least accurate enzyme, is unique in binding to a B-DNA duplex even close to its active site. This model leads to several predictions which are discussed in the light of published experimental data.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号