首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 336 毫秒
1.
Insulin-like growth factor binding proteins (IGFBPs) modulate the activity and distribution of insulin-like growth factors (IGFs). IGFBP-6 differs from other IGFBPs in being a relatively specific inhibitor of IGF-II actions. Another distinctive feature of IGFBP-6 is its unique N-terminal disulfide linkages; the N-domains of IGFBPs 1-5 contain six disulfides and share a conserved GCGCC motif, but IGFBP-6 lacks the two adjacent cysteines in this motif, so its first three N-terminal disulfide linkages differ from those of the other IGFBPs. The contributions of the N- and C-domains of IGFBP-6 to its IGF binding properties and their structure-function relationships have been characterized in part, but the structure and function of the distinctive N-terminal subdomain of IGFBP-6 are unknown. Here we report the solution structure of a polypeptide corresponding to residues 1-45 of the N-terminal subdomain of IGFBP-6 (NN-BP-6). The extended structure of the N-terminal subdomain of IGFBP-6 is very different from that of the short two-stranded beta-sheet of the N-terminal subdomain of IGFBP-4 and, by implication, the other IGFBPs. NN-BP-6 contains a potential cation-binding motif; lanthanide ion binding was observed, but no significant interaction was found with physiologically relevant metal ions like calcium or magnesium. However, this subdomain of IGFBP-6 has a higher affinity for IGF-II than IGF-I, suggesting that it may contribute to the marked IGF-II binding preference of IGFBP-6. The extended structure and flexibility of this subdomain of IGFBP-6 could play a role in enhancing the rate of ligand association and thereby be significant in IGF recognition.  相似文献   

2.
Zinc (Zn(2+)) is a multifunctional micronutrient. The list of functions for this micronutrient expanded with the recent discovery that Zn(2+) retains insulin-like growth factors binding proteins (IGFBPs) on the surface of cultured cells, lowers the affinity of cell-associated IGFBPs, and increases the affinity of the cell surface insulin-like growth factor (IGF)-type 1 receptor (IGF-1R). However, currently there is no information concerning the effect of Zn(2+) on soluble IGFBPs. In the current study, the soluble IGFBP-5 secreted by BC(3)H-1 cells is shown to bind approximately 50% more [(125)I]-IGF-II than [(125)I]-IGF-I at pH 7.4. Zn(2+) is shown to depress the binding of both IGF-I and IGF-II to soluble secreted IGFBP-5; [(125)I]-IGF-I binding is affected more so than [(125)I]-IGF-II binding. Zn(2+) acts by lowering the affinity (K(a)) of IGFBP-5 for the IGFs. Scatchard plots are non-linear indicating the presence of high and low affinity binding sites; Zn(2+) affects only binding to the high affinity site. In contrast, Zn(2+) increases the affinity by which either [(125)I]-IGF-I or [(125)I]-R(3)-IGF-I binds to the IGF-1R, but depresses [(125)I]-IGF-II binding to the IGF-type 2 receptor (IGF-2R) on BC(3)H-1 cells. By depressing the association of the IGFs with soluble IGFBPs, Zn(2+) is shown to repartition either [(125)I]-IGF-I or [(125)I]-IGF-II from soluble IGFBP-5 onto cell surface IGF receptors. Zn(2+) was active at physiological doses depressing IGF binding to IGFBP-5 and the IGF-2R at 15-20 microM. Hence, a novel mechanism is further characterized by which the trace micronutrient Zn(2+) could regulate IGF activity.  相似文献   

3.
Binding proteins for insulin-like growth factors (IGFs) IGF-I and IGF-II, known as IGFBPs, control the distribution, function and activity of IGFs in various cell tissues and body fluids. Insulin-like growth factor-binding protein-5 (IGFBP-5) is known to modulate the stimulatory effects of IGFs and is the major IGF-binding protein in bone tissue. We have expressed two N-terminal fragments of IGFBP-5 in Escherichia coli; the first encodes the N-terminal domain of the protein (residues 1-104) and the second, mini-IGFBP-5, comprises residues Ala40 to Ile92. We show that the entire IGFBP-5 protein contains only one high-affinity binding site for IGFs, located in mini-IGFBP-5. The solution structure of mini-IGFBP-5, determined by nuclear magnetic resonance spectroscopy, discloses a rigid, globular structure that consists of a centrally located three-stranded anti-parallel beta-sheet. Its scaffold is stabilized further by two inside packed disulfide bridges. The binding to IGFs, which is in the nanomolar range, involves conserved Leu and Val residues localized in a hydrophobic patch on the surface of the IGFBP-5 protein. Remarkably, the IGF-I receptor binding assays of IGFBP-5 showed that IGFBP-5 inhibits the binding of IGFs to the IGF-I receptor, resulting in reduction of receptor stimulation and autophosphorylation. Compared with the full-length IGFBP-5, the smaller N-terminal fragments were less efficient inhibitors of the IGF-I receptor binding of IGFs.  相似文献   

4.
The actions of insulin-like growth factors (IGFs) are modulated by a family of six high affinity binding proteins (IGFBPs 1-6). IGFBP-6 differs from other IGFBPs in having the highest affinity for IGF-II and in binding IGF-I with 20-100-fold lower affinity. IGFBPs 1-5 contain 18 conserved cysteines, but human IGFBP-6 lacks 2 of the 12 N-terminal cysteines. The complete disulfide linkages of IGFBP-6 were determined using electrospray ionization mass spectrometry of purified tryptic peptide complexes digested with combinations of chymotrypsin, thermolysin, and endoproteinase Glu-C. Numbering IGFBP-6 cysteines sequentially from the N terminus, the first three disulfide linkages are Cys1-Cys2, Cys3-Cys4, and Cys5-Cys6. The next two linkages are Cys7-Cys9 and Cys8-Cys10, which are analogous to those previously determined for IGFBP-3 and IGFBP-5. The C-terminal linkages are Cys11-Cys12, Cys13-Cys14, and Cys15-Cys16, analogous to those previously determined for IGFBP-2. Disulfide linkages of IGFBP-1 were partially determined and show that Cys1 is not linked to Cys2 and Cys3 is not linked to Cys4. Analogous with IGFBP-3, IGFBP-5, and IGFBP-6, Cys9-Cys11 and Cys10-Cys12 of IGFBP-1 are also disulfide-linked. The N-terminal linkages of IGFBP-6 differ significantly from those of IGFBP-1 (and, by implication, the other IGFBPs), which could contribute to the distinctive IGF binding properties of IGFBP-6.  相似文献   

5.
Insulin-like growth factor binding proteins (IGFBPs) are secreted by several cell types and can modify IGF actions. Mandin-Darby Bovine Kidney (MDBK) cells have been shown to secrete a 34,000 Da form of IGF binding protein whose N-terminal sequence is similar to a form of IGFBP purified from rat BRL-3A cells that has recently been named IGFBP-2. These studies report the complete amino acid sequence of bovine IGFBP-2 and compare its functional properties with human IGFBP-1. The protein is 81% identical to rat IGFBP-2. When compared with both rat IGFBP-2 and human IGFBP-1, the positions of all 18 cysteine residues are conserved. Similarly an RGD sequence is present near the carboxyl terminus in both proteins. IGFBP-2 has a higher affinity for IGF-II than for IGF-I and its affinity for both forms of IGF is greater than for human IGFBP-1. Like IGFBP-1 the protein can enhance the DNA synthesis response of porcine aortic smooth muscle cells to IGF-I; however, IGFBP-2 was much less potent. The maximum potentiation of the IGF-mediated mitogenic response that could be achieved was approximately 42% that of IGFBP-1. This potentiation is dependent upon a factor contained in platelet poor plasma and if this factor is omitted from the incubation medium, IGFBP-2 inhibits DNA synthesis. The purification of IGFBP-2 will allow more detailed comparisons to be made between it and other forms of IGFBPs in physiologic test systems.  相似文献   

6.
A family of six insulin-like growth factor (IGF) binding proteins (IGFBP-1-6) binds IGF-I and IGF-II with high affinity and thus regulates their bioavailability and biological functions. IGFBPs consist of N- and C-terminal domains, which are highly conserved and cysteine-rich, joined by a variable linker domain. The role of the C-domain in IGF binding is not completely understood in that C-domain fragments have very low or even undetectable IGF binding affinity, but loss of the C-domain dramatically disrupts IGF binding by IGFBPs. We recently reported the solution structure and backbone dynamics of the C-domain of IGFBP-2 (C-BP-2) and identified a pH-dependent heparin binding site [Kuang, Z., Yao, S., Keizer, D. W., Wang, C. C., Bach, L. A., Forbes, B. E., Wallace, J. C., and Norton, R. S. (2006) Structure, dynamics and heparin binding of the C-terminal domain of insulin-like growth factor-binding protein-2 (IGFBP-2), J. Mol. Biol. 364, 690-704]. Here, we have analyzed the molecular interactions among the N-domain of IGFBP-2 (N-BP-2), C-BP-2, and IGFs using cross-linking and nuclear magnetic resonance (NMR) spectroscopy. The binding of C-BP-2 to the IGF-I.N-BP-2 binary complex was significantly stronger than the binding of C-BP-2 to IGF-I alone, switching from intermediate exchange to slow exchange on the NMR time scale. A conformational change or stabilization of the IGF-I Phe49-Leu54 region and the Phe49 aromatic ring upon binding to the N-domains, as well as an interdomain interaction between N-BP-2 and C-BP-2 (which is also detectable in the absence of ligand), may contribute to this cooperativity in IGF binding. Glycosaminoglycan binding by IGFBPs can affect their IGF binding although the effects appear to differ among different IGFBPs; here, we found that heparin bound to the IGF-I.N-BP-2.C-BP-2 ternary complex, but did not cause it to dissociate.  相似文献   

7.
Within the IGF axis, the insulin-like growth factor-binding proteins (IGFBPs) are known to play a pivotal role in cell proliferation and differentiation. Defined proteolysis of the IGFBPs is proposed to be an essential mechanism for regulating IGF bioavailability. The generated IGFBP fragments in part exhibit different IGF-dependent and -independent biological activities. Characterizing naturally occurring forms of IGFBPs in human plasma, we identified both a N- and a C-terminal fragment of IGFBP-4 by means of immunoreactivity screening. As a source for peptide isolation, we used large amounts of human hemofiltrate obtained from patients with chronic renal failure. Purification of the IGFBP-4 peptides from hemofiltrate was performed by consecutive cation-exchange and reverse-phase chromatographic steps. Mass spectrometric and sequence analysis revealed an M(r) of 13 233 for the purified N-terminal fragment spanning residues Asp(1)-Phe(122) of IGFBP-4 and an M(r) of 11 344 for the C-terminal fragment extending from Lys(136) to Glu(237). Proteolytic digestion and subsequent biochemical analysis showed that the six cysteines of the C-terminal IGFBP-4 fragment are linked between residues 153-183, 194-205, and 207-228 (disulfide bonding pattern, 1-2, 3-4, and 5-6). Plasmon resonance spectroscopy, ligand blot analysis, and saturation and displacement studies demonstrated a very low affinity of the C-terminal IGFBP-4 fragment for the IGFs (IGF-II, K(d) = 690 nM; IGF-I, K(d) > 60 nM), whereas the N-terminal fragment retained significant IGF binding properties (IGF-II, K(d) = 17 nM; IGF-I, K(d) = 5 nM). This study provides the first molecular characterization of circulating human IGFBP-4 fragments formed in vivo exhibiting an at least 5-fold decrease in the affinity of the N-terminal IGFBP-4 fragment for the IGFs and a very low IGF binding capacity of the C-terminal fragment.  相似文献   

8.
The insulin-like growth factor (IGF) binding proteins (IGFBPs) have several functions, including transporting the IGFs in the circulation, mediating IGF transport out of the vascular compartment, localizing the IGFs to specific cell types, and modulating both IGF binding to receptors and growth-promoting actions. The functions of IGFBPs appear to be altered by posttranslational modifications. IGFBP-3, -4, -5, and -6 have been shown to be glycosylated. Likewise all the IGFBPs have a complex disulfide bond structure that is required for maintenance of normal IGF binding. IGFBP-2, -3, -4, and -5 are proteolytically cleaved, and specific proteases have been characterized for IGFBP-3, -4, and -5. Interestingly, attachment of IGF-I or II to IGFBP-4 results in enhancement of proteolysis, whereas attachment of either growth factor to IGFBP-5 results in inhibition of proteolytic cleavage. Cleavage of IGFBP-3 results in the appearance of a 31 kDa fragment that is 50-fold reduced in its affinity for the IGF-I or IGF-II. In spite of the reduction in its affinity, this fragment is capable of potentiating the effect of IGF-I on cell growth responses; therefore, proteolysis may be a specific mechanism that alters IGFBP modulation of IGF actions. Other processes that result in a reduction in IGF binding protein affinity are associated with potentiation of cellular responses to IGF-I and -II. Specifically, the binding of IGFBP-3 to cell surfaces is associated with its ability to enhance IGF action and with a ten- to 12-fold reduction in its affinity for IGF-I and IGF-II. Likewise, binding of IGFBP-5 to extracellular matrix (ECM) results in an eightfold reduction in its affinity and a 60% increase in cell growth in response to IGF-I. Another post-translational modification that modifies IGFBP activity is phosphorylation. IGFBP-1, -2, -3, and -5 have been shown to be phosphorylated. Phosphorylation of IGFBP-1 results in a sixfold enhancement in its affinity for IGF-I and -II. Following this enhancement of IGFBP-1 affinity, this binding protein loses its capacity to potentiate IGF-I growth-promoting activity. Future studies using site-directed mutagenesis to modify these proteins should enable us to determine the effect of these posttranslational modifications on the ability of IGFBPs to modulate IGF biologic activity. © 1993 Wiley-Liss, Inc.  相似文献   

9.
Insulin-like growth factor binding protein-6 (IGFBP-6) differs from IGFBPs 1-5 in that it binds IGF-II with marked preferential affinity over IGF-I. Human and rat IGFBP-6 lack 2 and 4 N-terminal cysteines and therefore the Gly-Cys-Gly-Cys-Cys motif present in IGFBPs 1-5. IGFBP-6 is O-glycolsylated, and five serine/threonine glycosylation sites in the non-conserved mid-region of human IGFBP-6 have been identified. O-Glycosylation inhibits proteolysis of IGFBP-6 by chymotrypsin and trypsin, but has no effect on high affinity IGF binding. IGFBP-6 is a relatively specific inhibitor of IGF-II actions; it has not been shown to potentiate IGF actions. IGFBP-6 is only cell-associated to a very limited extent, if at all. IGFBP-6 is often expressed in non-proliferative, quiescent states in vitro and differentiating agents increase its expression. IGFBP-6 expression is associated with inhibition of growth of tumour cells in vitro and in vivo. Although many questions remain regarding the biological role of IGFBP-6, its major function appears to be the regulation of IGF-II actions. This could be especially significant since IGF-II has been implicated as an autocrine tumour growth factor.  相似文献   

10.
In the circulation, most of the insulin-like growth factors (IGFs), IGF-binding proteins (IGFBPs), and IGFBP proteases are bound in high molecular mass complexes of > or =150 kDa. To investigate molecular interactions between proteins involved in IGF.IGFBP complexes, Cohn fraction IV of human plasma was subjected to IGF-II affinity chromatography followed by reversed-phase high pressure liquid chromatography and analysis of bound proteins. Mass spectrometry and Western blotting revealed the presence of IGFBP-3, IGFBP-5, transferrin, plasminogen, prekallikrein, antithrombin III, and the soluble IGF-II/mannose 6-phosphate receptor in the eluate. Furthermore, an IGFBP-3 protease cleaving also IGFBP-2 but not IGFBP-4 was co-purified from the IGF-II column. Inhibitor studies and IGFBP-3 zymography have demonstrated that the 92-kDa IGFBP-3 protease belongs to the class of serine-dependent proteases. IGF-II ligand blotting and surface plasmon resonance spectrometry have been used to identify plasminogen as a novel high affinity IGF-II-binding protein capable of binding to IGFBP-3 with 50-fold higher affinity than transferrin. In combination with transferrin, the overall binding constant of plasminogen/transferrin for IGF-II was reduced 7-fold. Size exclusion chromatography of the IGF-II matrix eluate revealed that transferrin, plasminogen, and the IGFBP-3 protease are present in different high molecular mass complexes of > or =440 kDa. The present data indicate that IGFs, low and high affinity IGFBPs, several IGFBP-associated proteins, and IGFBP proteases can interact, which may result in the formation of binary, ternary, and higher molecular weight complexes capable of modulating IGF binding properties and the stability of IGFBPs.  相似文献   

11.
The insulin-like growth factor-binding proteins (IGFBPs) are evolutionarily conserved components of the insulin-like growth factor (IGF) system. The six forms of IGFBPs (IGFBP-1–6) bind the IGF ligands (IGF-1 and -2) with high affinity and regulate the IGFs available to their receptors, therefore providing additional flexibilities in regulating IGF signalling. IGFBP-1, the first identified member of the IGFBP family is highly inducible under a variety of catabolic conditions, such as food deprivation, malnutrition, stress, injury and hypoxia. Recent in vivo studies have indicated that the induced IGFBP-1 serves as a molecular switch by restricting IGF signalling and diverts the limited energy resources away from growth and development towards those metabolic processes essential for survival. This article reviews the recent understandings of the molecular basis of IGFBP-1 regulation and its biological functions, as revealed through research in mammalian and fish models.  相似文献   

12.
13.
Insulin-like growth factor binding protein-6 (IGFBP-6) is an O-linked glycoprotein which specifically inhibits insulin-like growth factor (IGF)-II actions. The effects of O-glycosylation of IGFBP-6 on binding to glycosaminoglycans and proteolysis, both of which reduce the IGF binding affinity of other IGFBPs were studied. Binding of recombinant human nonglycosylated (n-g) IGFBP-6 to a range of glycosaminoglycans in vitro was approximately threefold greater than that of glycosylated (g) IGFBP-6. When bound to glycosaminoglycans, IGFBP-6 had approximately 10-fold reduced binding affinity for IGF-II. Exogenously added n-gIGFBP-6 but not gIGFBP-6 also bound to partially purified rat PC12 phaeochromocytoma membranes. Binding of n-gIGFBP-6 was inhibited by increasing salt concentrations, which is typical of glycosaminoglycan interactions. O-glycosylation also protected human IGFBP-6 from proteolysis by chymotrypsin and trypsin. Proteolysis decreased the binding affinity of IGFBP-6 for IGF-II, even with a relatively small reduction in apparent molecular mass as observed with chymotrypsin. Analysis by ESI-MS of IGFBP-6 following limited chymotryptic digestion showed that a 4.5-kDa C-terminal peptide was removed and peptide bonds involved in the putative high affinity IGF binding site were cleaved. The truncated, multiply cleaved IGFBP-6 remained held together by disulphide bonds. In contrast, trypsin cleaved IGFBP-6 in the mid-region of the molecule, resulting in a 16-kDa C-terminal peptide which did not bind IGF-II. These results indicate that O-glycosylation inhibits binding of IGFBP-6 to glycosaminoglycans and cell membranes and inhibits its proteolysis, thereby maintaining IGFBP-6 in a high-affinity, soluble form and so contributing to its inhibition of IGF-II actions.  相似文献   

14.
Robinson SA  Rosenzweig SA 《Biochemistry》2004,43(36):11533-11545
Activation of the insulin-like growth factor-1 (IGF)-1 receptor signaling pathways by IGF-1 and IGF-2 results in mitogenic and anabolic effects. The bioavailability of the IGFs is regulated by six soluble binding proteins, the insulin-like growth factor binding proteins (IGFBPs), which bind with approximately 0.1 nM affinity to the IGFs and often serve as endogenous antagonists of IGF action. To identify key domains of IGF-1 involved in the interaction with IGFBP-2 and IGFBP-3, we employed IGF-1 selectively biotinylated on residues Gly 1, Lys 27, Lys 65, and Lys 68. All monobiotinylated species of IGF-1 exhibited high affinity ( approximately 0.1-0.2 nM) for IGFBP-2 and IGFBP-3 in solid-phase-binding assays. However, different labeling intensities were observed in ligand blot analysis of IGFBP-2 and IGFBP-3. The N(epsilon)(Lys65/68)(biotin)-IGF-1 (N(epsilon)(Lys65/68b)-IGF-1) probe exhibited the highest signal intensity, while N(alpha)(Gly1b)-IGF-1 and N(epsilon)(Lys27b)-IGF-1 demonstrated significantly lower signals. When taken together, these results suggest that, once bound to IGFBP-2 or IGFBP-3, the biotin moieties of N(alpha)(Gly1b)-IGF-1 and N(epsilon)(Lys27b)-IGF-1 are inaccessible to NeutrAvidin-peroxidase, the secondary binding component. Ligand blots using IGF-1 derivatized with a long chain form of the N-hydroxysuccinimide biotin (NHS-biotin) to yield N(alpha)(Gly1)(LC-biotin)-IGF-1 and N(epsilon)(Lys27)(LC-biotin)-IGF-1 demonstrated increased signal intensity compared with their NHS-biotin counterparts. In BIAcore analysis, IGFBP-2 and IGFBP-3 bound only to the N(epsilon)(Lys65/68b)-IGF-1-coated flowcell of a biosensor chip, confirming the inaccessibility of Gly 1 and Lys 27 when IGF-1 is bound to IGFBP-2 and IGFBP-3. These data confirm the involvement of the IGFBP-binding domain on IGF-1 in binding to IGFBP-2 and IGFBP-3 and support involvement of the IGF-1R-binding domain in IGFBP binding.  相似文献   

15.
Insulin-like growth factor binding proteins (IGFBPs) modulate the cellular action of the insulin-like growth factors. Inhibition or enhancement of IGF effects by these cell-secreted binding proteins have been described. We have purified two IGFBPs (23 and 29 kDa) from media conditioned by U-2 human osteosarcoma cells using ligand-affinity chromatography and reversed phase HPLC. N-terminal amino acid analysis of the 23 kDa protein revealed a unique sequence with variable homology to IGFBPs 1-4. The 29 kDa IGFBP was found to be nearly identical to a recently reported IGFBP. Because the affinity purified U-2 IGFBPs enhanced IGF-I-stimulated osteoblast mitogenesis, we suggest that one or both of these binding proteins enhance IGF action in bone.  相似文献   

16.
In blood, circulating IGFs are bound to six high-affinity IGFBPs, which modulate IGF delivery to target cells. Serum IGFs and IGFBP-3, the main carrier of IGFs, are upregulated by GH. The functional role of serum IGFBP-3-bound IGFs is not well understood, but they constitute the main reservoir of IGFs in the circulation. We have used an equation derived from the law of mass action to estimate serum IGFBP-3-bound IGF-I and IGFBP-3-bound IGF-II, as well as serum free IGF-I and free IGF-II, in 129 control children and adolescents (48 girls and 81 boys) and in 13 patients with GHD. Levels of serum total IGF-I, total IGF-II, IGFBP-1, IGFBP-2 and IGFBP-3 were determined experimentally, while those of IGFBP-4, IGFBP-5 and IGFPB-6, as well as the 12 affinity constants of association of the two IGFs with the six IGFBPs, were taken from published values. A correction for in vivo proteolysis of serum IGFBP-3 was also considered. In controls, serum total IGF-I, total IGF-II, IGFBP-3, IGFBP-3-bound IGF-I, IGFBP-3-bound IGF-II and free IGF-I increased linearly with age, from less than 1 to 15 years, in the two sexes. The concentrations of serum free IGF-I and free IGF-II were approximately two orders of magnitude below published values, as well as below the affinity constant of association of IGF-I with the type-1 IGF receptor. Therefore, it is unlikely that these levels can interact with the receptor. In the 13 patients with GHD, mean (+/- SD) SDS of serum IGFBP-3-bound IGF-I was -2.89 +/- 0.97. It was significantly lower than serum total IGF-I, free IGF-I or IGFBP-3 SDSs (-2.35 +/- 0.83, -1.12 +/- 0.78 and -2.55 +/- 1.07, respectively, p = 0.0001). The mean SDS of serum total IGF-II, IGFBP-3-bound IGF-II and free IGF-II were -1.25 +/- 0.68, -2.03 +/- 0.87 and 0.59 +/- 1.10, respectively, in GHD. In control subjects, 89.8 +/- 4.47% of serum total IGF-I and 77.3 +/- 9.4% of serum total IGF-II were bound to serum IGFBP-3. In patients with GHD, the mean serum IGFBP-3-bound IGF-I and IGFBP-3-bound IGF-II were 8.63 +/- 8. 53 and 19.1 +/- 14.7% below the respective means of control subjects (p < 0.02). In conclusion, in GHD there was a relative change in the distribution of serum IGFs among IGFBPs, due to the combined effects of the decrease in both total IGF-I and IGFBP-3. As a result, serum IGFBP-3-bound IGF-I and IGFBP-3 bound IGF-II, the main reservoirs of serum IGFs, were severely affected. This suggests that the decrease in serum IGFPB-3-bound IGF-I and IGFBP-3-bound IGF-II might have a negative effect for growth promotion and other biological effects of IGF-I and IGF-II. Finally, the estimation of serum IGFBP-3-bound IGF-I, or the percentage of total IGF-I and IGF-II bound to IGFBP-3, might be useful markers in the diagnosis of GHD.  相似文献   

17.
18.
IGFs are important mediators of growth. IGF binding proteins (IGFBPs) 1-6 regulate IGF actions and have IGF-independent actions. The C-terminal domains of IGFBPs contribute to high-affinity IGF binding and modulation of IGF actions and confer some IGF-independent properties, but understanding how they achieve this has been constrained by the lack of a three-dimensional structure. We therefore determined the solution structure of the C-domain of IGFBP-6 using nuclear magnetic resonance (NMR). The domain consists of a thyroglobulin type 1 fold comprising an alpha-helix followed by a loop, a three-stranded antiparallel beta-sheet incorporating a second loop, and finally a disulfide-bonded flexible third loop. The IGF-II binding site on the C-domain was identified by examining NMR spectral changes upon complex formation. It consists of a largely hydrophobic surface patch involving the alpha-helix, the first beta-strand, and the first and second loops. The site was confirmed by mutagenesis of several residues, which resulted in decreased IGF binding affinity. The IGF-II binding site lies adjacent to surfaces likely to be involved in glycosaminoglycan binding of IGFBPs, which might explain their decreased IGF affinity when bound to glycosaminoglycans, and nuclear localization. Our structure provides a framework for understanding the roles of IGFBP C-domains in modulating IGF actions and conferring IGF-independent actions, as well as ultimately for the development of therapeutic IGF inhibitors for diseases including cancer.  相似文献   

19.
Insulin-like growth factor-1 (IGF1) has been reported to stimulate hair elongation and to facilitate maintenance of the hair follicle in anagen phase. However, little is known about IGF1 signaling in the hair follicle. In this study we investigate the effects of IGF1, glucocorticoids, and retinoids on dermal papilla (DP) cell production of insulin-like growth factor binding proteins (IGFBPs). IGFBPs comprise a family of IGF binding proteins that are produced and released by most cell types. They bind to IGFs to either enhance or inhibit IGF activity. In the present report we identify IGFBP-3 as being produced and released by cultured human dermal papilla (DP) cells. IGFBP-3 levels are increased fivefold by retinoic acid, eightfold by dexamethasone, and tenfold by IGF1. DP cells are known to produce IGF1, and so the observed stimulation of DP cell IGFBP-3 production by IGF1 is consistent with the idea that DP cells possess the IGF transmembrane receptor kinase and are autoregulated by IGFs. The level of another IGFBP, tentatively identified as IGFBP-2, is, in contrast, not regulated by these agents. IGFBP-3 has been shown to inhibit the activity of IGFs in a variety of systems. Our results are consistent with a model in which retinoids and glucocorticoids inhibit IGF action on DP cells and surrounding matrix cells by stimulating increased DP cell production of IGFBP-3. The IGFBP-3, in turn, forms a complex with free IGF1 to reduce the concentration of IGF1 available to stimulate hair elongation and maintenance of anagen phase. © 1996 Wiley-Liss, Inc.  相似文献   

20.
Insulin-like growth factors (IGFs) are important growth regulators of both normal and malignant prostate cells. Their action is regulated by six insulin-like growth factor binding proteins (IGFBPs). The proteolytic cleavage of IGFBPs by various proteases decreases dramatically their affinity for their ligands and therefore enhances the bioavailability of IGFs. To elucidate the putative biological role of prostatic kallikreins hK2 and hK3 (prostate-specific antigen) in tumour progression, we analyzed the degradation of IGFBP-2, -3, -4 and -5 by these two tissue kallikreins. We found that hK3, already characterized as an IGFBP-3 degrading protease, cleaved IGFBP-4 but not IGFBP-2 and -5, whereas hK2 cleaved all of the IGFBPs much more effectively, and at concentrations far lower than those reported for other IGFBP-degrading proteases. The proteolytic patterns after cleavage of IGFBPs by hK2 and hK3 were similar and were not modified in the presence of IGF-I. Heparin, but not other glycosaminoglycans, enhanced dramatically the ability of hK3 but not hK2 to degrade IGFBP-3 and IGFBP-4. More importantly, the IGFBP fragments generated by hK2 and hK3 had no IGF-binding capacity, as assessed by Western ligand blotting. Our results suggest that the prostatic kallikreins hK2 and hK3 may influence specifically the tumoral growth of prostate cells through the degradation of IGFBPs, to increase IGF bioavailability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号