首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The stomatal resistance of individual leaves of young cotton plants (Gossypium hirsutum L. var. Stoneville 213) was measured during a period of soil moisture stress under conditions of constant evaporative demand. When plants were subjected to increasing soil water stress, increases in stomatal resistance occurred first on the lower leaves and the stomata on the upper surfaces were the most sensitive to decreasing leaf-water potential. Stomatal closure proceeded from the oldest leaves to the youngest as the stress became more severe. This apparent effect of leaf age was not due to radiation differences during the stress period. Radiation adjustments on individual leaves during their development altered the stomatal closure potential for all leaves, but did not change the within-plant pattern. Our data indicate that no single value of leaf water potential will adequately represent a threshold for stomatal closure in cotton. Rather, the stomatal resistance of each leaf is uniquely related to its own water potential as modified by age and radiation regime during development. The effect of age on stress-induced stomatal closure was not associated with a loss of potassium from older leaves. Increases in both the free and bound forms of abscisic acid were observed in water-stressed plants, but the largest accumulations occurred in the youngest leaves. Thus, the pattern of abscisic acid accumulation in response to water stress did not parallel the pattern of stomatal closure induced by water stress.  相似文献   

2.
In the French Alps, Soldanella alpina (S. alpina) grow under shade and sun conditions during the vegetation period. This species was investigated as a model for the dynamic acclimation of shade leaves to the sun under natural alpine conditions, in terms of photosynthesis and leaf anatomy. Photosynthetic activity in sun leaves was only slightly higher than in shade leaves. The leaf thickness, the stomatal density and the epidermal flavonoid content were markedly higher, and the chlorophyll/flavonoid ratio was significantly lower in sun than in shade leaves. Sun leaves also had a more oxidised plastoquinone pool, their PSII efficiency in light was higher and their non-photochemical quenching (NPQ) capacity was higher than that of shade leaves. Shade-sun transferred leaves increased their leaf thickness, stomatal density and epidermal flavonoid content, while their photosynthetic activity and chlorophyll/flavonoid ratio declined compared to shade leaves. Parameters indicating protection against high light and oxidative stress, such as NPQ and ascorbate peroxidase, increased in shade-sun transferred leaves and leaf mortality increased. We conclude that the dynamic acclimation of S. alpina leaves to high light under alpine conditions mainly concerns anatomical features and epidermal flavonoid acclimation, as well as an increase in antioxidative protection. However, this increase is not large enough to prevent damage under stress conditions and to replace damaged leaves.  相似文献   

3.
胡杨叶片气孔导度特征及其对环境因子的响应   总被引:19,自引:2,他引:17  
依据2005年对极端干旱区荒漠河岸林胡杨的观测资料,对胡杨气孔运动进行了分析研究以揭示胡杨的水分利用特征与抗旱机理。结果表明:(1)胡杨叶片气孔导度日变化呈现为周期波动曲线,其波动周期为2 h,傍晚(20:00)波动消失;净光合速率和蒸腾速率与气孔导度的波动相对应而呈现同步周期波动。(2)胡杨的阳生叶气孔导度高于阴生叶,且不同季节气孔导度值不同,阳生叶气孔导度的季节变幅大于阴生叶。(3)胡杨气孔导度与气温、相对湿度和叶水势有显著相关关系,当CO2浓度较小时,胡杨气孔导度随CO2浓度的增加而增加,当CO2浓度达到一定值后气孔导度不再增加,反而随CO2浓度的增加大幅度降低。(4)胡杨适应极端干旱区生境的气孔调节机制为反馈式反应,即由于叶水势降低导致气孔导度减小,从而减少蒸腾耗水,达到节约用水、适应干旱的目的,表明胡杨的水分利用效率随气孔限制值的增大而减小,二者呈显著负相关。  相似文献   

4.
Stomatal control of transpiration from a developing sugarcane canopy   总被引:2,自引:2,他引:0  
Abstract. Stomatal conductance of single leaves and transpiration from an entire sugarcane (Saccharum spp. hybrid) canopy were measured simultaneously using independent techniques. Stomatal and environmental controls of transpiration were assessed at three stages of canopy development, corresponding to leaf area indices (L) of 2.2, 3.6 and 5.6. Leaf and canopy boundary layers impeded transport of transpired water vapour away from the canopy, causing humidity around the leaves to find its own value through local equilibration rather than a value determined by the humidity of the bulk air mass above the canopy. This tended to uncouple transpiration from direct stomatal control, so that transpiration predicted from measurement of stomatal conductance and leaf-to-air vapour pressure differences was increasingly overestimated as the reference point for ambient vapour pressure measurement was moved farther from the leaf and into the bulk air. The partitioning of control between net radiation and stomata was expressed as a dimensionless decoupling coefficent ranging from zero to 1.0. When the stomatal aperture was near its maximum this coefficient was approximately 0.9, indicating that small reductions in stomatal aperture would have had little effect on canopy transpiration. Maximum rates of transpiration were, however, limited by large adjustments in maximum stomatal conductance during canopy development. The product of maximum stomatal conductance and L. a potential total canopy conductance in the absence of boundary layer effects, remained constant as L increased. Similarly, maximum canopy conductance, derived from independent micrometeorological measurements, also remained constant over this period. Calculations indicated that combined leaf and canopy boundary layer conductance decreased with increasing L such that the ratio of boundary layer conductance to maximum stomatal conductance remained nearly constant at approximately 0.5. These observations indicated that stomata adjusted to maintain both transpiration and the degree of stomatal control of transpiration constant as canopy development proceeded.  相似文献   

5.
We studied photosynthetic and stomatal responses of grain sorghum ( Sorghum bicolor [L.] Moench cv. Pioneer 8500), soybean ( Glycine max L. cv. Flyer) and eastern gamagrass ( Tripsacum dactyloides L.) during experimental sun and shade periods simulating summer cloud cover. Leaf gas exchange measurements of field plants showed that short-term (5 min) shading of leaves to 300–400 μmol m−2 s−1 photosynthetic photon flux density reduced photosynthesis, leaf temperature, stomatal conductance, transpiration and water use efficiency and increased intercellular CO2 partial pressure. In all species, photosynthetic recovery was delayed when leaves were reilluminated, apparently by stomatal closure. The strongest stomatal response was in soybean. Photosynthetic recovery was studied further with soybeans grown indoors (maximum photosynthetic photon flux density 1 200 μmol m−2 s−1). Plants grown indoors had responses to shade similar to those of field plants, except for brief nonstomatal limitation immediately after reillumination. These responses indicated the importance of the light environment during leaf development on assimilation responses to variable light, and suggested different limitations on carbon assimilation in different parts of the soybean canopy. Photosynthetic oxygen evolution recovered immediately upon reillumination, indicating that the light reactions did not limit soybean photosynthetic recovery. While shade periods caused stomatal closure and reduced carbon gain and water loss in all species, the consequences for carbon gain/water loss were greatest in soybean. The occurrence of stomatal closure in all three species may arise from their shared phenologies and herbaceous growth forms.  相似文献   

6.
The variation in stomatal characters in leaves from one Alnus glutinosa (L.) Gaertn. tree is analysed. Measurements were taken from over 70 sites on the abaxial surfaces of representative ‘sun’ and ‘shade’ leaves having the same insertion point. The mean values of stomatal density and index in the shade leaf were significantly lower (71 and 93%, respectively) than those for the sun leaf. Within leaves, up to 2.5-fold differences in stomatal density values were observed. Contour maps derived from the data reveal non-random trends over the leaf surface. Correlations between stomatal density, epidermal cell density and stomatal index indicate that the variation in stomatal density within leaves arose primarily from local differences in stomatal differentiation, rather than from local differences in leaf expansion. This research demonstrates that a high level of variation in stomatal characters occurs both within and between leaves. We conclude that a well-defined sampling strategy should be used when estimating stomatal characters for (tree) leaves. Furthermore, the leaf's insertion point and situation within the tree crown should be taken into account. We discuss the implications of these findings for palaeoclimatic interpretations and emphasize the need for great caution when drawing conclusions based solely on stomatal characters.  相似文献   

7.
Stomatal Responses of Variegated Leaves to CO2 Enrichment   总被引:1,自引:0,他引:1  
The responses of stomatal density and stomatal index of fivespecies of ornamental plants with variegated leaves grown attwo mole fractions of atmospheric CO2 (350 and 700 µmolmol-1) were measured. The use of variegated leaves allowed anypotential effects of mesophyll photosynthetic capacity to beuncoupled from the responses of stomatal density to changesin atmospheric CO2 concentration. There was a decrease in stomataldensity and stomatal index with CO2 enrichment on both white(unpigmented) and green (pigmented) leaf areas. A similar responseof stomatal density and index was also observed on areas ofleaves with pigmentation other than green indicating that anydifferences in metabolic processes associated with colouredleaves are not influencing the responses of stomatal densityto CO2 concentrations. Therefore the carboxylation capacityof mesophyll tissue has no direct influence on stomatal densityand index responses as suggested previously (Friend and Woodward1990 Advances in Ecological Research 20: 59-124), instead theresponses were related to leaf structure. The stomatal characteristics(density and index) of homobaric variegated leaves showed agreater sensitivity to CO2 on green portions, whereas heterobaricleaves showed a greater sensitivity on white areas. These resultsprovide evidence that leaf structure may play an important rolein determining the magnitude of stomatal density and index responsesto CO2 concentrations.Copyright 1995, 1999 Academic Press Leaf structure, photosynthesis, stomatal conductance, CO2, stomatal density, stomatal index  相似文献   

8.
Stomatal and photosynthetic responses to variable sunlight   总被引:11,自引:0,他引:11  
Most plants experience many fluctuations in sunlight from full sun to shade throughout the day. Under these conditions, stomatal and photosynthetic responses vary dramatically among species depending on water status and growth form. Many herbaceous, fast-growing species rapidly reduce stomatal opening during short-term shade periods. Rapid stomatal closure during shade conserves water, but may also reduce CO2 uptake. Because periods of alternating sun and shade can reduce accumulative water stress that would otherwise severely curtail carbon gain, some herbs are restricted to habitats with intermittent periods of shade. In contrast to herbaceous growth forms, woody species maintain relatively constant stomatal opening during both sun and shade periods. This results in greater CO2 uptake, but with greater water loss. These two generalized response patterns for woody and herbaceous species to natural variations in sunlight conflict with conventional ideas of water use and carbon gain based on measurements made under constant light.  相似文献   

9.
UV-B辐射对蚕豆叶片气孔运动的间接效应与NO和H2O2有关   总被引:1,自引:1,他引:0  
0.2 W.m-2的UV-B辐射不仅能诱导整体蚕豆叶片气孔导度和开度的显著降低,而且能明显降低蚕豆叶肉光合活性,但该强度的UV-B辐射却不能明显影响离体表皮条的气孔开度.说明0.2W.m-2的UV-B主要通过间接途径调控了蚕豆叶片气孔运动.借助药理学试验和激光扫描共聚焦显微镜技术,进一步对该间接效应过程中是否有NO和H2O2的参与进行了探讨.结果显示:NO专一性清除剂cPT IO和一氧化氮合酶(NO S)抑制剂L-NAM E均能有效地抑制UV-B辐射诱导的叶片气孔关闭和保卫细胞内源NO水平的升高;H2O2清除剂抗坏血酸(A SC)和过氧化氢酶(CAT)也能有效地逆转UV-B辐射诱导的气孔关闭和保卫细胞内源H2O2含量的升高.另外,外源NO或H2O2处理也能有效地诱导叶片气孔关闭.结果说明0.2W.m-2的UV-B辐射对蚕豆叶片气孔关闭的间接诱导与NO和H2O2有关.  相似文献   

10.
Leaf anatomical and chemical characteristics, water relations and stomatal regulation were studied in the shrub Myrtus communis growing under two contrasting Mediterranean light environments (full light versus 30% of full light) during the spring-summer period. These studies aimed to assess plant response to the combined effects of light and water availability. Foliar morphology, anatomy and chemistry composition acclimated positively to light conditions. Leaves of sun-exposed plants were thicker (38.7%) than those of shaded plants, mainly due to increased palisade parenchyma thickness, had a higher nitrogen concentration and stomatal density than the shade ones, which maximized foliar area (>SLA) and Chl/N molar ratio to improve light interception. Chlorophyll concentration per leaf area (Chl(a)) was always higher in sun leaves while, as expressed on dry mass (Chl(m)), significant differences were only apparent in September, shade leaves presenting higher values. During the summer period Chl(a) and Chl(m) markedly declined in sun leaves and remained unchanged in shade ones. The ratio of chlorophyll a/b was not affected either by the light intensity or by the season. Shade leaves presented generally a higher concentration of soluble carbohydrates per dry mass. No significant differences in starch concentration were apparent between sun and shade leaves and a gradual depletion occurred during the water stress period. Maximum stomatal conductances correlated positively with predawn water potential. Throughout the season, sun plants always presented higher leaf conductance to water vapour and lower minimum leaf water potentials, indicating an interaction of light-environment on these water relation parameters. Stomatal closure constitutes a mechanism to cope with diurnal and seasonal water deficits, sun plants presenting a more efficient control of water losses during water deficiency period. In addition, both sun and shade plants evidenced leaf osmotic adjustment ability in response to water stress, which was greater in sun ones.  相似文献   

11.
The variation in stomatal activity within the crowns ofAcer campestre, Carpinus betulus andQuercus cerris was measured by vapour exchange porometer on several summer days in an oak-hornbeam forest, in SW Slovakia, Czechoslovakia. Variation resulted from crown position in the forest stand and from leaf position within the canopy. The highest stomatal conductance was in sunlit sun leaves in the upper part of the canopy. Stomatal conductance decreased with increasing depth in the canopy. The steepest decrease was in the upper canopy, in the intermediate zone between fully sunlit and fully shaded leaves, and was caused by the decline in leaf irradiance and in stomatal density. In codominant trees, the conductance in shade leaves at the base of the crown was significantly lower than in the sun leaves at the top of the crown. In a dominant tree,Q. cerris, the differences in stomatal conductance were small and most frequently insignificant. Variation in incident light also determined the diurnal variation of stomatal conductance with respect to crown aspect. Differences between sun leaves on the east and west facing aspects of the overstory crown ofQ. cerris were demonstrated for several days.  相似文献   

12.
The relation between photosynthesis and stomatal resistance of each leaf surface in cotton leaves (Gossypium hirsutum) was studied during ageing and with increase in light intensity. During ageing of leaves the stomatal resistance of the upper surface increases before that of the lower surface. This observation would suggest that the stomata of the upper leaf surface commence to age before those of the lower leaf surface. The earlier commencement of the increase in upper stomatal resistance results in the decline in photosynthesis at an early stage of ageing being negatively correlated with the upper stomatal resistance and not related to the lower stomatal resistance. The results indicate that in this initial phase of ageing the decrease in photosynthesis and increase in stomatal resistance of the upper surface are not causally related but occur simultaneously. At a more advanced stage of ageing the lower stomatal resistance also increases and then the decline in photosynthesis becomes related to the increase in stomatal resistance of both leaf surfaces. When illumination of leaves is increased stepwise, the resultant increase in photosynthesis is related to the reduction in stomatal resistance of each leaf surface. At low light intensities the stomatal resistance of the lower surface is low while that of the upper surface is relatively high. The difference between them decreases with increase in light intensity. This would indicate that the upper stomata require a higher light intensity to open than the lower stomata. The stormatal resistance of the two leaf surfaces is not related to the stomatal frequencey.  相似文献   

13.
Leaves within a canopy may experience rapid and extreme fluctuations in ambient conditions. A shaded leaf, for example, may become exposed to an order of magnitude increase in solar radiation within a few seconds, due to sunflecks or canopy motions. Considering typical time scales for stomatal adjustments, (2 to 60 minutes), the gap between these two time scales raised the question whether leaves rely on their hydraulic and thermal capacitances for passive protection from hydraulic failure or over-heating until stomata have adjusted. We employed a physically based model to systematically study effects of short-term fluctuations in irradiance on leaf temperatures and transpiration rates. Considering typical amplitudes and time scales of such fluctuations, the importance of leaf heat and water capacities for avoiding damaging leaf temperatures and hydraulic failure were investigated. The results suggest that common leaf heat capacities are not sufficient to protect a non-transpiring leaf from over-heating during sunflecks of several minutes duration whereas transpirative cooling provides effective protection. A comparison of the simulated time scales for heat damage in the absence of evaporative cooling with observed stomatal response times suggested that stomata must be already open before arrival of a sunfleck to avoid over-heating to critical leaf temperatures. This is consistent with measured stomatal conductances in shaded leaves and has implications for water use efficiency of deep canopy leaves and vulnerability to heat damage during drought. Our results also suggest that typical leaf water contents could sustain several minutes of evaporative cooling during a sunfleck without increasing the xylem water supply and thus risking embolism. We thus submit that shaded leaves rely on hydraulic capacitance and evaporative cooling to avoid over-heating and hydraulic failure during exposure to typical sunflecks, whereas thermal capacitance provides limited protection for very short sunflecks (tens of seconds).  相似文献   

14.
气孔限制在植物叶片光合诱导中的作用   总被引:5,自引:0,他引:5  
用三种不同的气体交换分析方法研究了玉米、大豆等叶片光合诱导期间的气孔限制作用。发现有利于气孔开放的因素如良好的土壤水分状况、较高的空气湿度等,能够缩短叶片的光合诱导期;CO_2饱和条件下,叶片的光合诱导期比在普通空气条件下的诱导期短得多;在光合诱导后期细胞间隙CO_2度达到稳态值以后,气孔导度的增加伴随着光合速率的提高和气孔限制值的下降。而气孔导度的降低则会引起光合速率的降低和气孔限制值的上升。诱导期存在气孔限制,并在后期占优势。  相似文献   

15.
I. Tari 《Biologia Plantarum》2003,47(2):215-220
The plant growth retardant, paclobutrazol at 8.5 or 17.0 μM concentrations effectively inhibited the stem elongation and primary leaf expansion of bean seedlings. Although the retardant reduced the relative water content in well-watered plants, the water and pressure potentials remained high in the primary leaves. K+, Na+, Mg2+ and Ca2+ contents in the primary leaves of the paclobutrazol-treated plants were not significantly different from those in the control. The stomatal density increased on both surfaces but the length of guard cells was not reduced significantly on the adaxial epidermes of the paclobutrazol-treated primary leaves. The inhibitory effect of paclobutrazol on the abaxial stomatal conductances became more pronounced with time during the light period but the adaxial surfaces displayed similar or slightly higher conductances than those of the control. The transpiration rate on a unit area basis did not change significantly or increased in the treated leaves thus the reduced water loss of paclobutrazol-treated plants was due to the reduced leaf area. Stomatal conductances of the adaxial surfaces responded more intensively to exogenous abscisic acid and the total leaf conductance decreased faster with increasing ABA concentration in the control than in the paclobutrazol-treated leaves. Paclobutrazol, an effective inhibitor of phytosterol biosynthesis, not only amplified the stomatal differentiation but increased the differences between the adaxial and abaxial stomatal conductances of the primary leaves.  相似文献   

16.
The effect of potassium deficiency on cuticular resistance and diurnal variation in stomatal diffusive resistance was studied in tea (Camellia sinensis). The plants were grown in sand and potassium deficiency induced by withholding the supply of potassium. The results showed that during the day potassium-deficient leaves had a higher stomatal diffusive resistance than control leaves. However when solar radiation was reduced by clouds the stomatal diffusive resistance in both control and potassium-deficient leaves was not significantly different. Night opening of stomata was observed in both control and potassium-deficient leaves, but noticeably lower in the latter. Potassium-deficient leaves had a lower cuticular resistance than control leaves.  相似文献   

17.
Leaf functional traits are important because they reflect physiological functions, such as transpiration and carbon assimilation. In particular, morphological leaf traits have the potential to summarize plants strategies in terms of water use efficiency, growth pattern and nutrient use. The leaf economics spectrum (LES) is a recognized framework in functional plant ecology and reflects a gradient of increasing specific leaf area (SLA), leaf nitrogen, phosphorus and cation content, and decreasing leaf dry matter content (LDMC) and carbon nitrogen ratio (CN). The LES describes different strategies ranging from that of short-lived leaves with high photosynthetic capacity per leaf mass to long-lived leaves with low mass-based carbon assimilation rates. However, traits that are not included in the LES might provide additional information on the species'' physiology, such as those related to stomatal control. Protocols are presented for a wide range of leaf functional traits, including traits of the LES, but also traits that are independent of the LES. In particular, a new method is introduced that relates the plants’ regulatory behavior in stomatal conductance to vapor pressure deficit. The resulting parameters of stomatal regulation can then be compared to the LES and other plant functional traits. The results show that functional leaf traits of the LES were also valid predictors for the parameters of stomatal regulation. For example, leaf carbon concentration was positively related to the vapor pressure deficit (vpd) at the point of inflection and the maximum of the conductance-vpd curve. However, traits that are not included in the LES added information in explaining parameters of stomatal control: the vpd at the point of inflection of the conductance-vpd curve was lower for species with higher stomatal density and higher stomatal index. Overall, stomata and vein traits were more powerful predictors for explaining stomatal regulation than traits used in the LES.  相似文献   

18.
The question as to what triggers stomatal closure during leaf desiccation remains controversial. This paper examines characteristics of the vascular and photosynthetic functions of the leaf to determine which responds most similarly to stomata during desiccation. Leaf hydraulic conductance (K(leaf)) was measured from the relaxation kinetics of leaf water potential (Psi(l)), and a novel application of this technique allowed the response of K(leaf) to Psi(l) to be determined. These "vulnerability curves" show that K(leaf) is highly sensitive to Psi(l) and that the response of stomatal conductance to Psi(l) is closely correlated with the response of K(leaf) to Psi(l). The turgor loss point of leaves was also correlated with K(leaf) and stomatal closure, whereas the decline in PSII quantum yield during leaf drying occurred at a lower Psi(l) than stomatal closure. These results indicate that stomatal closure is primarily coordinated with K(leaf). However, the close proximity of Psi(l) at initial stomatal closure and initial loss of K(leaf) suggest that partial loss of K(leaf) might occur regularly, presumably necessitating repair of embolisms.  相似文献   

19.
The effect of acute ozone exposure on the stomatal conductance and leaf water content during rapid desiccation was examined in leaves of two tobacco cultivars, ozone sensitive cv. BelW3 and ozone tolerant cv. Samsun. The relative rate of stomatal closure was constant during leaf desiccation in cv. Samsun but decreased in cv. BelW3 in both ozonated and control plants. Ozone exposure increased the relative rate of stomatal closure and transpiration rate (measured on the following day) in cv. Samsun, but reduced the respective parameters in cv. BelW3. As a result, the plants of ozone-sensitive cultivar, treated with ozone, lost more water during desiccation than control plants. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
小麦和大豆叶片的气孔不均匀关闭现象   总被引:9,自引:0,他引:9  
用14CO2放射自显影的方法研究了田间小麦和大豆叶片在水分胁迫下的气孔关闭状况。正常浇水的小麦和大豆叶片呈现出对14CO2的均匀吸收。在小麦与大豆"片水势分别降至-1.75和-1.32MPa的土壤干旱条件下,两种作物叶片都发生气孔不均匀关闭。离休叶片在空气中快速脱水易引起气孔不均匀关闭。正常供水小麦叶片在晴天中午明显的光合午休时,无CO2的不均匀吸收。某些晴天中午,在大豆光合午休低谷时段观察到较明显的气孔不均匀关闭,用气体交换资料计算出的细胞间隙CO2浓度并不随气孔年度的降低而下降,反而略有回升。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号