首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The structure of cell wall teichoic acids was studied by chemical methods and NMR spectroscopy in the type strains of two actinomycete species of the Streptomyces griseoviridis phenetic cluster: streptomyces daghestanicus and streptomyces murinus. S. daghestanicus VKM Ac-1722t contained two polymers having a 1,5-poly(ribitol phosphate) structure. In one of them, the ribitol units had -rhamnopyranose and 3-O-methyl--rhamnopyranose substituents; in the other, each ribitol unit was carrying 2,4-ketal-bound pyruvic acid. Such polymers were earlier found in the cell walls of Streptomyces roseolus and Nocardiopsis albus, respectively; however, their simultaneous presence in the cell wall has never been reported. The cell wall teichoic acid of Streptomyces murinus INA-00524T was a 1,5-poly(glucosylpolyol phosphate), whose repeating unit was [-6)--D-glucopyranosyl-(12)-glycerol phosphate-(3-P-]. Such a teichoic acid was earlier found in Spirilliplanes yamanashiensis. The 13C NMR spectrum of this polymer is presented for the first time. The results of the present investigation, together with earlier published data, show that the type strains of four species of the Streptomyces griseoviridis phenetic cluster differ in the composition and structure of their teichoic acids; thus, teichoic acids may serve as chemotaxonomic markers of the species.Translated from Mikrobiologiya, Vol. 74, No. 1, 2005, pp. 48–54.Original Russian Text Copyright © 2005 by Streshinskaya, Kozlova, Alferova, Shashkov, Evtushenko.  相似文献   

2.
The cell wall ofNocardiopsis prasina VKM Ac-1880T was found to contain two structurally different teichoic acids: unsubstituted 3,5-poly(ribitol phosphate) and l,3-poly(glycerol phosphate) substituted at position 2 by 10% with α-N-acetylglucosamine and by 5% withO-acetyl groups. The structure of the polymers was studied by chemical analysis and NMR spectroscopy. The results obtained correlate wellwith 16S rRNA sequence data and confirm the species-specificity of teichoic acids in the genusNocardiopsis.  相似文献   

3.
The cell walls of Actinomadura viridis contain poly(glycosylglycerol phosphate) chains of complex structure. On the basis of NMR spectroscopy of the polymer and glycosides thereof the following structural units were found: beta-D-Galp3Me-(1-->4)[beta-D-Glcp-(1-->6)]-beta-D-Galp-(1-->1)-++ +snGro (G1); beta-D-Galp-(1-->4)-beta-D-Galp-(1-->1)-snGro (G2); beta-D-Galp3Me-(1-->4)-beta-D-Galp-(1-->1)-snGro (G2a); beta-D-Galp-(1-->1)-snGro (G3); beta-D-Galp-(1-->1)[beta-D-Galp-(1-->2)]-snGro (G4); beta-D-Glcp-(1-->2)-snGro (G5). Glycosides G1, G2 and G3 were the predominant components of the teichoic acid: they formed the polymer chain via phosphodiester bonds involving C-3 of the glycerol residue and C-3 of the galactosyl residue which in turn glycosylates C-1 of the glycerol residue. Whether the different glycosides make up the one chain or whether there are several poly(glycosylglycerol phosphate) chains in the cell wall remains to be determined. It was suggested that the minor component G5 is located at the nonterminal end of the chains. Compound G4 which contains disubstituted glycerol residues (unusual for the teichoic acid) was also found as a minor component; this may be the glycoside of a new type of teichoic acid, or a glycoside on the terminal end of the above mentioned chains. In addition, small amounts of 1,3-poly(glycerol phosphate) chains were found in the cell wall.  相似文献   

4.
The cell wall of a pathogenic strain Streptomyces sp. VKM Ac-2275 isolated from potato tubers infected by scab contains a teichoic acid related to poly(glycosylpolyol phosphate) with a repeating unit established by chemical and NMR spectroscopic methods. About 60% of l-rhamnose residues bear an O-acetyl group at O-2 and 20% of the internal glucose residues contain an additional phosphate at C-4. The polymer is built of 5-6 units. This structure is found in bacteria for the first time. The strain is phylogenetically closest to the scab-causing species Streptomyces scabiei and Streptomyces europaeiscabiei, but differs from both these species in morphological and physiological characters and does not produce thaxtomin A, the main phytotoxin produced by S. scabiei.  相似文献   

5.
A teichoic acid from the cell walls of Nocardioides luteus VKM Ac-1246T, a validly described species of the Nocardioides genus, is a 1,5-poly(ribitol phosphate) completely substituted at C-4 by alpha-D-galactopyranosyl residues carrying a 4,6-pyruvate ketal group in R-configuration. The structure of the repeating unit of the polymer is as follows: [figure]. The chain consists of approximately 18 repeating units and six beta-D-galactofuranosyl residues linked in the oligomer by 1,6-glycosidic bonds. The oligomer probably terminates the growing end of the teichoic acid. The structure of the polymer was determined by chemical methods and NMR spectroscopy. This teichoic acid has not been described so far.  相似文献   

6.
A teichoic acid of Nocardioides albus VKM Ac-805T cell walls, a typical species of the genus Nocardioides, contains a poly(glycosylglycerol phosphate). The repeating unit of the polymer has the structure: [figure]. These units are in phosphodiester linkage at C-3 of glycerol and C-3 of beta-D-galactopyranose. beta-D-Galactopyranosyl residues are substituted at C-4 by beta-D-glucopyranose carrying a 4,6-pyruvate ketal group in S-configuration. The presence of pyruvic acid in the majority of repeating units increases the anionic properties of the polymer in comparison with most other common teichoic acids. This is the first report of the occurrence of a beta-D-galactofuranosyl residue in teichoic acids; it probably acts as a terminator of an extending chain of the polymer. The ratio of beta-D-galactopyranosyl to beta-D-galactofuranosyl units is 7:1. The polymer structure was determined by NMR spectroscopy. This type of teichoic acid structure has not been reported previously.  相似文献   

7.
The teichoic acids (TAs) of type strains, viz. Bacillus licheniformis VKM B-511T and Bacillus pumilus VKM B-508T, as well as phylogenetically close bacteria VKM B-424, VKM B-1554, and VKM B-711 previously assigned to Bacillus pumilus on the basis of morphological, physiological, and biochemical properties, were investigated. Three polymers were found in the cell wall of each of the 5 strains under study. Strains VKM B-508T, VKM B-424, and VKM B-1554 contained polymers of the same core: unsubstituted 1,3-poly(glycerol phosphate) (TA I) and 1,3-poly(glycerol phosphate) with O-D-Ala and N-acetyl-??-D-glucosamine substituents (TA II and TA III??, respectively). The cell walls of two remaining strains contained TA I, TA II, and a poly(glycosylpolyol phosphate) with the following structure of repeating units: -6)-??-D-GlcpNAc(1??1)-snGro-(3-P-(TA III?) in ??Bacillus pumilus?? VKM B-711 (100% 16S rRNA gene similarity with the type strain of Bacillus safensis) and -6)-??-D-Galp-(1??2)-snGro-(3-P-(TA III?) in Bacillus licheniformis VKM B-511T. The simultaneous presence of three different TAs in the cell walls was confirmed by the NMR spectroscopic DOSY methods. The structure of the polymers and localization of O-D-Ala residues were investigated by the chemical and NMR spectroscopic methods.  相似文献   

8.
The major cell wall polymer of Streptomyces sp. VKM Ac-2125, the causative agent of potato scab, is galactomannan with the repeating unit of the following structure: [carbohydrate structure in text] The polysaccharide with such a structure is found in the bacterial cell wall for the first time. The cell wall also contains small amount of a teichoic acid of the poly(glycerol phosphate) type and 3-deoxy-D-glycero-D-galacto-non-2-ulopyranosonic acid.  相似文献   

9.
The cell wall of Actinoplanes philippinesis VKM Ac-647 harbours several carbohydrate-containing anionic polymers. (1) The main polymer of the wall is of a poly(glycosylglycerol phosphate) nature. Its monomeric units — O--d-mannopyranosyl-(14)--d-galactopyranosyl-(11)-glycerol monophosphates — are connected by phosphodiester bonds involving the hydroxyl groups at glycerol C3 and galactose C6. There also are chains without mannosyl substitutents. The teichoic acid structure has been established by chemical analysis and with 1H and 13C NMR spectroscopy. This is the first finding of a teichoic acid with mannosyl residues in a bacterial cell wall. (2) The phosphorylated mannan contains mannose and 2-O-methylmannose. Its core chain has -1,2; -1,3; and -1,6 substitutions as revealed by 13C NMR spectroscopy.The peptide unit of the peptidoglycan contains no l-alanine, instead of which position 1 is occupied by glycine; and diaminopimelic acid is represented, besides its meso- (or DD) form, by small amounts of its LL isomer.Abbreviations Gro glycerol - Gro2P glycerol-2 phosphate - APT attached-proton-test - Ptot total content of phosphorus - Plab phosphorus mineralized in 7 min at 100°C - PNA phosphorus of nucleic acids - Pstab stable phosphorus - T trace amounts  相似文献   

10.
The cell wall of Brevibacterium permense VKM Ac-2280 contains two teichoic acids. The major polymer represents a 1,6-poly(mannitol phosphate) substituted wirh either L-rhamnose (approximately 70%, unit A) or (S)-acetal of pyruvic acid (approximately 30%, unit B) with the overall chain length approximately 10 mannitol phosphate units. [carbohydrate structure: see text] The other polymer is an unsubstituted 1,3-poly(glycerol phosphate). The structures of the polymers were established using chemical degradations and NMR spectroscopy. The data obtained may be helpful in determination of the species-specific status of newly isolated Brevibacterium strains.  相似文献   

11.
Anionic polymers of the cell surface of a thermophilic streptomycete were investigated. The cell wall of Streptomyces thermoviolaceus subsp. thermoviolaceus VKM Ac-1857(T) was found to contain polymers with different structure: teichoic acid--1,3-poly(glycerol phosphate), disaccharide-1-phosphate polymer with repeating unit -6)-alpha-Galp-(1-->6)-alpha-GlcpNAc-P-, and polysaccharide without phosphate with repeating unit -->6)-alpha-GalpNAc-(1-->3)-beta-GalpNAc-(1-->. Disaccharide-1-phosphate and polysaccharide without phosphate have not been described earlier in prokaryotic cell walls.  相似文献   

12.
A hexasaccharide 1-phosphate polymer of original structure and two teichoic acids (TA) belonging to different structural types were found in Arthrobacter uratoxydans VKM Ac-1979T cell wall. The poly(hexasaccharide 1-phosphate) combines features of teichuronic acids and glycosyl 1-phosphate polymers, and its structure has never been reported earlier. Its composition includes residues of α- and β-D-glucuronic acid as well as α-D-galacto-, β-D-gluco-, α-D-mannopyranose, and 6-O-acetylated 2-acetamido-2-deoxy-α-D-glucopyranose. The phosphodiester bond in the polymer joins the glycoside hydroxyl of α-D-glucuronic acid and O6 of α-D-galactopyranose. TA 1 is β-D-glucosylated 1,3-poly(glycerol phosphate), and TA 2 is 3,6-linked poly[α-D-glucosyl-(1→2)-glycerol phosphate]. The phosphate-containing polymers were studied by chemical methods and on the basis of one-dimensional 1H-, 13C-, and 31P-NMR spectra, homonuclear two-dimensional 1H/1H COSY, TOCSY, ROESY, and heteronuclear 1H/13C HSQC, HSQC-TOCSY, HMBC, and 1H/31P HMBC experiments. The set and structure of the polymers revealed as well as the cell wall sugars (galactose, glucose, mannose, glucosamine) and glycerol can be used in microbiological practice for taxonomic purposes.  相似文献   

13.
The major cell wall polymer of Kineosporia aurantiaca VKM Ac-702T a representative of the suborder Frankineae, is a galactomannan with a repeating unit of the following structure: -->3)-beta-D-Galp-(1-->6)-beta-D-Manp-(1-->4)-beta-D-Manp-(1-->3)-beta-D-Galp-(1-->4)-beta-D-Manp-(1-->4)-beta-D-Manp-(1--> that has not been reported so far. This was established using chemical degradation methods and NMR spectroscopy. The polysaccharide identified in the present study provides the second example of neutral galactomannans in actinomycete cell walls. The cell wall of K. aurantiaca VKM Ac-702T also contains a minor teichoic acid, viz., 1,3-poly(glycerol phosphate) partially substituted with alpha-glucosamine residues, only part of which are N-acetylated.  相似文献   

14.
The cell wall anionic polymers of the 13 species of the "Streptomyces cyaneus" cluster have a similar structure and contain beta-glucosylated 1,5-poly(ribitol phosphate) and 1,3-poly(glycerol phosphate). In the degree of glucosylation of the ribitol phosphate units of their teichoic acids, the cluster members can be divided into two groups. The streptomycetes of the first group (S. afghaniensis, S. janthinus, S. purpurascens, S. roseoviolaceus, and S. violatus) are characterized by a very similar structure of their cell walls, completely glucosylated 1,5-poly(ribitol phosphate) chains, and a high degree of DNA homology (67-88%). The cell wall teichoic acids of the second group (S. azureus, S. bellus, S. caelestis, S. coeruleorubidus, S. curacoi, and S. violarus) differ in the degree of beta-glucosylation of their 1,5-poly(ribitol phosphate) chains and have a lower level of DNA homology (54-76%). Two streptomycetes of the cluster (S. cyaneus and S. hawaiiensis) are genetically distant from the other cluster members but have the same composition and structure of the cell wall teichoic acids as the second-group streptomycetes. The data obtained confirm the genetic relatedness of the "S. cyaneus" cluster members and suggest that the structure of the cell wall teichoic acids may serve as one of the taxonomic criteria of the species-level status of streptomycetes.  相似文献   

15.
The cell wall of Nocardiopsis prasina VKM Ac-1880T was found to contain two structurally different teichoic acids: unsubstituted 3,5-poly(ribitol phosphate) and 1,3-poly(glycerol phosphate), substituted at position 2 by 10% with alpha-N-acetylglucosamine and by 5% with O-acetyl groups. The structure of the polymers was studied by chemical analysis and NMR spectroscopy. The results obtained correlate well with 16S rRNA sequence data and confirm the species-specificity of teichoic acids in the genus Nocardiopsis.  相似文献   

16.
The cell wall of Spirilliplanes yamanashiensis VKM Ac-1993(T) contains four anionic polymers, viz., three teichoic acids and a sugar-1-phosphate polymer. The following are the structures of the teichoic acids: poly[-6-beta-D-glucopyranosyl-(1-->2)-glycerol phosphate] (PI), 1,3-poly(glycerol phosphate) bearing N-acetyl-alpha-D-glucosamine residues at O-2 (70%) (PII), and poly[-6-N-acetyl-alpha-D-glucosaminyl-(1-->2)-glycerol phosphate] (PIII). The repeating unit of the fourth polymer (PIV) has the structure of -6-alpha-D-GlcpNAc-(1-->6)-alpha-D-GlcpNAc-1-P- with a 3-O-methyl-alpha-D-mannopyranosyl residues at position 3 of some 6-phosphorylated N-acetylglucosamine residues (50%). Polymers PI, PIII and PIV have not hitherto been found in prokaryotic cell walls.  相似文献   

17.
Biochemistry (Moscow) - Rathayibacter sp. VKM Ac-2759 (family Microbacteriaceae, class Actinobacteria) contains two glycopolymers in the cell wall. The main chain of rhamnan, glycopolymer 1, is...  相似文献   

18.
The cell wall of Streptomyces rutgersensis var. castelarense contains structurally different chains of 1,3-type glycerol teichoic acid. Part of the molecules consisting of 20-25 monomers, carry on every third glycerol phosphate unit (at C-2) alpha-glucosamine residues, only half of which are N-acetylated. There are chains with O-lysine groups, and free nonsubstituted ones. The chain structure has been ascertained by chemical analysis and 13C- and 1H-NMR spectroscopy.  相似文献   

19.
The cell wall of Bacillus subtilis VKM B-762 contains, along with 1,5-poly[4-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)ribitol phosphate], a novel type of glycopolymer involving three types of inter-monomeric bonds in the repeating unit, viz., amide, glycosidic and phosphodiester:Such a structural pattern of natural glycopolymers has been hitherto unknown. This polymer represents a novel type of teichoic acids.  相似文献   

20.
Structures of the anionic polymers of streptomycetes Streptomyces fulvissimus VKM Ac-994(T), Streptomyces longispororuber VKM Ac-1735(T), Streptomyces aureoveticillatus VKM Ac-48(T) and Streptomyces spectabilis INA 00606 belonging to the phenetic cluster 'S. fulvissimus' were investigated by chemical and NMR spectroscopic methods. A teichoic acid from the cell wall of S. spectabilis INA 00606 was studied in more detail, and this was shown to represent 1,3-poly(glycerol phosphate) substituted with glucosamine (alpha-D-GlcNAc) and L-glutamic acid (non-stoichiometric substitution). For the first time, glutamic acid is identified as an acyl substituent in teichoic acids of streptomycetes. The polymer chain is built of the following fragments: Cell walls of other streptomycetes of the phenocluster under study contain 1,3-poly(glycerol phosphates) with glucosamine as a glycosyl substituent at O-2 of the glycerol phosphate units and L-glutamic acid and lysine as O-2 acyl substituents. Not all amino sugar residues in the polymers of these strains are N-acetylated, and the content of the glucosamine and lysine residues in the polymers of different strains is not the same. Despite certain quantitative differences in the structures of the polymers, one may consider streptomycetes of the phenocluster 'S. fulvissimus' as closely related microorganisms, the details of the structures serving as additional criteria for the determination of the species status of a strain under study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号