首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Empirical evidence is accumulating that pathogens drive selection and explain common patterns of high immune gene (major histocompatibility complex, MHC) polymorphism. While most previous studies have identified that selection has acted over large time scales on the MHC, there still is a paucity of information in mammal species that demonstrates how processes operate on MHC genes in extant generations. Here we investigated 439 striped mouse individuals (Rhabdomys pumilio), trapped across seven different locations along a climatic gradient in southern Africa. Data from a previous study, conducted in the same study system, revealed that gastro-intestinal nematode infections were higher in individuals from study sites located within wetter climates compared to those from drier ones. In order to improve our understanding about the role of parasite-driven selection on the MHC in contemporary generations we tested for population divergences based on seven neutral microsatellite markers and the MHC DRB exon II locus. If divergences exist, we wanted to know if they are influenced by the spatial variation in parasite pressure mediated by different climatic conditions along the study site transect. Our analysis revealed an extensive polymorphism of 249 different MHC alleles and isolation-by-distance showed significant correlations at the microsatellite loci but not at the MHC. Nematode pressure was lowest at the driest site (Fish River Canyon, Namibia) and specifically this population revealed the highest divergence between MHC and microsatellite loci. We conclude that spatial variation in parasite pressure can facilitate local immune gene adaptations and thus mediate interactions of directional and balancing selection shaping MHC polymorphism in contemporary generations.  相似文献   

2.
Mitochondrial genes generally show high levels of standing genetic variation, which is puzzling given the accumulating evidence for phenotypic effects of mitochondrial genetic variation. Negative frequency‐dependent selection, where the relative fitness of a genotype is inversely related to its frequency in a population, provides a potent and potentially general process that can maintain mitochondrial polymorphism. We assessed the change in mitochondrial haplotype frequencies over 10 generations of experimental evolution in 180 seed beetle populations in the laboratory, where haplotypes competed for propagation to subsequent generations. We found that haplotypes consistently increased in frequency when they were initially rare and decreased in frequency when initially common. Our results have important implications for the use of mtDNA haplotype frequency data to infer population level processes and they revive the general hypothesis that negative frequency‐dependent selection, presumably caused by habitat heterogeneity, may commonly promote polymorphism in ecologically relevant life history genes.  相似文献   

3.
How polymorphisms are maintained within populations over long periods of time remains debated, because genetic drift and various forms of selection are expected to reduce variation. Here, we study the genetic architecture and maintenance of phenotypic morphs that confer crypsis in Timema cristinae stick insects, combining phenotypic information and genotyping‐by‐sequencing data from 1,360 samples across 21 populations. We find two highly divergent chromosomal variants that span megabases of sequence and are associated with colour polymorphism. We show that these variants exhibit strongly reduced effective recombination, are geographically widespread and probably diverged millions of generations ago. We detect heterokaryotype excess and signs of balancing selection acting on these variants through the species’ history. A third chromosomal variant in the same genomic region likely evolved more recently from one of the two colour variants and is associated with dorsal pattern polymorphism. Our results suggest that large‐scale genetic variation associated with crypsis has been maintained for long periods of time by potentially complex processes of balancing selection.  相似文献   

4.
Our current understanding of sympatric speciation is that it occurs primarily through disruptive selection on ecological genes driven by competition, followed by reproductive isolation through reinforcement-like selection against inferior intermediates/heterozygotes. Our evolutionary model of selection on resource recognition and preference traits suggests a new mechanism for sympatric speciation. We find speciation can occur in three phases. First a polymorphism of functionally different phenotypes is established through evolution of specialization. On the gene level, regulatory functions have evolved in which some alleles are conditionally switched off (i.e. are silent). These alleles accumulate harmful mutations that potentially may be expressed in offspring through recombination. Second mating associated with resource preference invades because harmful mutations in parents are not expressed in the offspring when mating assortatively, thereby dividing the population into two pre-zygotically isolated resource-specialist lineages. Third, silent alleles that evolved in phase one now accumulate deleterious mutations over the following generations in a Bateson-Dobzhansky-Muller fashion, establishing a post-zygotic barrier to hybridization.  相似文献   

5.
Our understanding of the evolutionary consequences of mutation relies heavily on estimates of the rate and fitness effect of spontaneous mutations generated by mutation accumulation (MA) experiments. We performed a classic MA experiment in which frequent sampling of MA lines was combined with whole genome resequencing to develop a high-resolution picture of the effect of spontaneous mutations in a hypermutator (ΔmutS) strain of the bacterium Pseudomonas aeruginosa. After ∼644 generations of mutation accumulation, MA lines had accumulated an average of 118 mutations, and we found that average fitness across all lines decayed linearly over time. Detailed analyses of the dynamics of fitness change in individual lines revealed that a large fraction of the total decay in fitness (42.3%) was attributable to the fixation of rare, highly deleterious mutations (comprising only 0.5% of fixed mutations). Furthermore, we found that at least 0.64% of mutations were beneficial and probably fixed due to positive selection. The majority of mutations that fixed (82.4%) were base substitutions and we failed to find any signatures of selection on nonsynonymous or intergenic mutations. Short indels made up a much smaller fraction of the mutations that were fixed (17.4%), but we found evidence of strong selection against indels that caused frameshift mutations in coding regions. These results help to quantify the amount of natural selection present in microbial MA experiments and demonstrate that changes in fitness are strongly influenced by rare mutations of large effect.  相似文献   

6.
Current methods for detecting fluctuating selection require time series data on genotype frequencies. Here, we propose an alternative approach that makes use of DNA polymorphism data from a sample of individuals collected at a single point in time. Our method uses classical diffusion approximations to model temporal fluctuations in the selection coefficients to find the expected distribution of mutation frequencies in the population. Using the Poisson random-field setting we derive the site-frequency spectrum (SFS) for three different models of fluctuating selection. We find that the general effect of fluctuating selection is to produce a more "U"-shaped site-frequency spectrum with an excess of high-frequency derived mutations at the expense of middle-frequency variants. We present likelihood-ratio tests, comparing the fluctuating selection models to the neutral model using SFS data, and use Monte Carlo simulations to assess their power. We find that we have sufficient power to reject a neutral hypothesis using samples on the order of a few hundred SNPs and a sample size of approximately 20 and power to distinguish between selection that varies in time and constant selection for a sample of size 20. We also find that fluctuating selection increases the probability of fixation of selected sites even if, on average, there is no difference in selection among a pair of alleles segregating at the locus. Fluctuating selection will, therefore, lead to an increase in the ratio of divergence to polymorphism similar to that observed under positive directional selection.  相似文献   

7.
Is senescence the adaptive result of tradeoffs between younger and older ages or the nonadaptive burden of deleterious mutations that act at older ages? To shed new light on this unresolved question we combine adaptive and nonadaptive processes in a single model. Our model uses Penna''s bit-strings to capture different age-specific mutational patterns. Each pattern represents a genotype and for each genotype we find the life history strategy that maximizes fitness. Genotypes compete with each other and are subject to selection and to new mutations over generations until equilibrium in gene-frequencies is reached. The mutation-selection equilibrium provides information about mutational load and the differential effects of mutations on a life history trait - the optimal age at maturity. We find that mutations accumulate only at ages with negligible impact on fitness and that mutation accumulation has very little effect on the optimal age at maturity. These results suggest that life histories are largely determined by adaptive processes. The non-adaptive process of mutation accumulation seems to be unimportant at evolutionarily relevant ages.  相似文献   

8.
We develop a Poisson random-field model of polymorphism and divergence that allows arbitrary dominance relations in a diploid context. This model provides a maximum-likelihood framework for estimating both selection and dominance parameters of new mutations using information on the frequency spectrum of sequence polymorphisms. This is the first DNA sequence-based estimator of the dominance parameter. Our model also leads to a likelihood-ratio test for distinguishing nongenic from genic selection; simulations indicate that this test is quite powerful when a large number of segregating sites are available. We also use simulations to explore the bias in selection parameter estimates caused by unacknowledged dominance relations. When inference is based on the frequency spectrum of polymorphisms, genic selection estimates of the selection parameter can be very strongly biased even for minor deviations from the genic selection model. Surprisingly, however, when inference is based on polymorphism and divergence (McDonald-Kreitman) data, genic selection estimates of the selection parameter are nearly unbiased, even for completely dominant or recessive mutations. Further, we find that weak overdominant selection can increase, rather than decrease, the substitution rate relative to levels of polymorphism. This nonintuitive result has major implications for the interpretation of several popular tests of neutrality.  相似文献   

9.
K Ezawa  H Innan 《Heredity》2013,111(5):364-374
Traditionally, population genetics focuses on the dynamics of frequencies of alleles acquired by mutations on germ-lines, because only such mutations are heritable. Typical genotyping experiments, however, use DNA from some somatic tissues such as blood, which harbors somatic mutations at the current generation in addition to germ-line mutations accumulated since the most recent common ancestor of the sample. This common practice may sometimes cause erroneous interpretations of polymorphism data, unless we properly understand the role of somatic mutations in population genetics. We here introduce a very basic theoretical framework of population genetics with somatic mutations taken into account. It is easy to imagine that somatic mutations at the current generation simply add individual-specific variations, as errors in mutation detection do. Our theory quantifies this increment under various conditions. We find that the major contribution of somatic mutations plus errors is to very rare variants, particularly to singletons. The relative contribution is markedly large when mutations are deleterious. Because negative selection also increases rare variants, it is important to distinguish the roles of these mutually confounding factors when we interpret the data, even after correcting for demography. We apply this theory to human copy number variations (CNVs), for which the composite effect of somatic mutations and errors may not be negligible. Using genome-wide CNV data, we demonstrate how the joint action of the two factors, selection and somatic mutations plus errors, shapes the observed pattern of polymorphism.  相似文献   

10.
Persistence time of a mutant allele, the expected number of generations before its elimination from the population, can be estimated as the ratio of the number of segregating mutations per individual over the mutation rate per generation. We screened two natural populations of Drosophila melanogaster for mutations causing clear-cut eye phenotypes and detected 25 mutant alleles, falling into 19 complementation groups, in 1164 haploid genomes, which implies 0.021 eye mutations/genome. The de novo haploid mutation rate for the same set of loci was estimated as 2 x 10(-4) in a 10-generation mutation-accumulation experiment. Thus, the average persistence time of all mutations causing clear-cut eye phenotypes is approximately 100 generations (95% confidence interval: 61-219). This estimate shows that the strength of selection against phenotypically drastic alleles of nonessential loci is close to that against recessive lethals. In both cases, deleterious alleles are apparently eliminated by selection against heterozygous individuals, which show no visible phenotypic differences from wild type.  相似文献   

11.
Through an analysis of polymorphism within and divergence between species, we can hope to learn about the distribution of selective effects of mutations in the genome, changes in the fitness landscape that occur over time, and the location of sites involved in key adaptations that distinguish modern-day species. We introduce a novel method for the analysis of variation in selection pressures within and between species, spatially along the genome and temporally between lineages. We model codon evolution explicitly using a joint population genetics-phylogenetics approach that we developed for the construction of multiallelic models with mutation, selection, and drift. Our approach has the advantage of performing direct inference on coding sequences, inferring ancestral states probabilistically, utilizing allele frequency information, and generalizing to multiple species. We use a Bayesian sliding window model for intragenic variation in selection coefficients that efficiently combines information across sites and captures spatial clustering within the genome. To demonstrate the utility of the method, we infer selective pressures acting in Drosophila melanogaster and D. simulans from polymorphism and divergence data for 100 X-linked coding regions.  相似文献   

12.
The genetic bases of adaptation are being investigated in 12 populations of Escherichia coli, founded from a common ancestor and serially propagated for 20,000 generations, during which time they achieved substantial fitness gains. Each day, populations alternated between active growth and nutrient exhaustion. DNA supercoiling in bacteria is influenced by nutritional state, and DNA topology helps coordinate the overall pattern of gene expression in response to environmental changes. We therefore examined whether the genetic controls over supercoiling might have changed during the evolution experiment. Parallel changes in topology occurred in most populations, with the level of DNA supercoiling increasing, usually in the first 2000 generations. Two mutations in the topA and fis genes that control supercoiling were discovered in a population that served as the focus for further investigation. Moving the mutations, alone and in combination, into the ancestral background had an additive effect on supercoiling, and together they reproduced the net change in DNA topology observed in this population. Moreover, both mutations were beneficial in competition experiments. Clonal interference involving other beneficial DNA topology mutations was also detected. These findings define a new class of fitness-enhancing mutations and indicate that the control of DNA supercoiling can be a key target of selection in evolving bacterial populations.  相似文献   

13.
Our data on a subterranean mammal, Spalax ehrenbergi, and other evidence, indicate that appreciable polymorphism can be preserved in small isolated populations consisting of several dozens of, or a hundred, individuals. Current theoretical models predict fast gene fixation in small panmictic populations without selection, mutation, or gene inflow. Using simple multilocus models, we demonstrate here that moderate stabilizing selection (with stable or fluctuating optimum) for traits controlled by additive genes could oppose random fixation in such isolates during thousands of generations. We also show that in selection-free models polymorphism persists only for a few hundred generations even under high mutation rates. Our multi-chromosome models challenge the hitchhiking hypothesis of polymorphism maintenance for many neutral loci due to close linkage with few selected loci.  相似文献   

14.
Dykhuizen DE  Dean AM 《Genetics》2004,167(4):2015-2026
The impact of adaptation on the persistence of a balanced polymorphism was explored using the lactose operon of Escherichia coli as a model system. Competition in chemostats for two substitutable resources, methylgalactoside and lactulose, generates stabilizing frequency-dependent selection when two different naturally isolated lac operons (TD2 and TD10) are used. The fate of this balanced polymorphism was tracked over evolutionary time by monitoring the frequency of fhuA-, a linked neutral genetic marker that confers resistance to the bacteriophage T5. In four out of nine chemostats the lac polymorphism persisted for 400-600 generations when the experiments were terminated. In the other five chemostats the fhuA polymorphism, and consequently the lac operon polymorphism, was lost between 86 and 219 generations. Four of 13 chemostat cultures monomorphic for the lac operon retained the neutral fhuA polymorphism for 450-550 generations until they were terminated; the remainder became monomorphic at fhuA between 63 and 303 generations. Specialists on each galactoside were isolated from chemostats that maintained the fhuA polymorphism, whether polymorphic or monomorphic at the lac operon. Strains isolated from three of four chemostats in which the lac polymorphism was preserved had switched their galactoside preference. Most of the chemostats where the fhuA polymorphism was lost also contained specialists. These results demonstrate that the initial polymorphism at lac was of little consequence to the outcome of long-term adaptive evolution. Instead, the fitnesses of evolved strains were dominated by mutations arising elsewhere in the genome, a fact confirmed by showing that operons isolated from their evolved backgrounds were alone unable to explain the presence of both specialists. Our results suggest that, once stabilized, ecological specialization prevented selective sweeps through the entire population, thereby promoting the maintenance of linked neutral polymorphisms.  相似文献   

15.
Understanding tree recruitment is needed to forecast future forest distribution. Many studies have reported the relevant ecological factors that affect recruitment success in trees, but the potential for genetic-based differences in recruitment has often been neglected. In this study, we established a semi-natural reciprocal sowing experiment to test for local adaptation and microenvironment effects (evaluated here by canopy cover) in the emergence and early survival of maritime pine (Pinus pinaster Aiton), an emblematic Mediterranean forest tree. A novel application of molecular markers was also developed to test for family selection and, thus, for potential genetic change over generations. Overall, we did not find evidence to support local adaptation at the recruitment stage in our semi-natural experiment. Moreover, only weak family selection (if any) was found, suggesting that in stressful environments with low survival, stochastic processes and among-year climate variability may drive recruitment. Nevertheless, our study revealed that, at early stages of recruitment, microenvironments may favor the population with the best adapted life strategy, irrespectively of its (local or non-local) origin. We also found that emergence time is a key factor for seedling survival in stressful Mediterranean environments. Our study highlights the complexity of the factors influencing the early stages of establishment of maritime pine and provides insights into possible management actions aimed at environmental change impact mitigation. In particular, we found that the high stochasticity of the recruitment process in stressful environments and the differences in population-specific adaptive strategies may difficult assisted migration schemes.  相似文献   

16.
Acinetobacter baylyi ADP1 has the potential to be a versatile bacterial host for synthetic biology because it is naturally transformable. To examine the genetic reliability of this desirable trait and to understand the potential stability of other engineered capabilities, we propagated ADP1 for 1,000 generations of growth in rich nutrient broth and analyzed the genetic changes that evolved by whole-genome sequencing. Substantially reduced transformability and increased cellular aggregation evolved during the experiment. New insertions of IS1236 transposable elements and IS1236-mediated deletions led to these phenotypes in most cases and were common overall among the selected mutations. We also observed a 49-kb deletion of a prophage region that removed an integration site, which has been used for genome engineering, from every evolved genome. The comparatively low rates of these three classes of mutations in lineages that were propagated with reduced selection for 7,500 generations indicate that they increase ADP1 fitness under common laboratory growth conditions. Our results suggest that eliminating transposable elements and other genetic failure modes that affect key organismal traits is essential for improving the reliability of metabolic engineering and genome editing in undomesticated microbial hosts, such as Acinetobacter baylyi ADP1.  相似文献   

17.
There exists extensive variation in eye size. Much work has provided a connection between light availability and differences in eye size across taxa. Experimental tests of the role of the light environment on the evolution of eye size are lacking. Here, we performed a selection experiment that examined the influence of light availability on shifts in eye size and the connection between eye size and phototactic (anti-predator) behaviour in Daphnia. We set-up replicate experimental populations of Daphnia, repeatedly evaluated phenotypic shifts in eye size during the ~50-day experiment, and performed a common garden experiment at the end of the experiment to test for evolutionary shifts in eye size and behaviour. Our phenotypic analyses showed that eye size rapidly diverged between the light treatments; relative eye size was consistently larger in the low versus high light treatments. Selection on eye size was also modified by variation in density as increases in Daphnia density favoured a larger eye. However, we did not observe differences in eye size between the light treatments following two generations of common garden rearing at the end of the experiment. We instead observed strong shifts in anti-predator behaviour. Daphnia from the low light treatment exhibited decreased phototactic responses to light. Our results show that decreased light relaxes selection on anti-predator behaviour. Such trends provide new insights into selection on eye size and behaviour.  相似文献   

18.
Population and quantitative genetic models provide useful approximations to predict long-term selection responses sustaining phenotypic shifts, and underlying multilocus adaptive dynamics. Valid across a broad range of parameters, their use for understanding the adaptive dynamics of small selfing populations undergoing strong selection intensity (thereafter High Drift-High selection regime, HDHS) remains to be explored. Saclay Divergent Selection Experiments (DSEs) on maize flowering time provide an interesting example of populations evolving under HDHS, with significant selection responses over 20 generations in two directions. We combined experimental data from Saclay DSEs, forward individual-based simulations, and theoretical predictions to dissect the evolutionary mechanisms at play in the observed selection responses. We asked two main questions: How do mutations arise, spread, and reach fixation in populations evolving under HDHS? How does the interplay between drift and selection influence observed phenotypic shifts? We showed that the long-lasting response to selection in small populations is due to the rapid fixation of mutations occurring during the generations of selection. Among fixed mutations, we also found a clear signal of enrichment for beneficial mutations revealing a limited cost of selection. Both environmental stochasticity and variation in selection coefficients likely contributed to exacerbate mutational effects, thereby facilitating selection grasp and fixation of small-effect mutations. Together our results highlight that despite a small number of polymorphic loci expected under HDHS, adaptive variation is continuously fueled by a vast mutational target. We discuss our results in the context of breeding and long-term survival of small selfing populations.  相似文献   

19.
Gerstein AC  Otto SP 《PloS one》2011,6(12):e26599
Ploidy varies tremendously within and between species, yet the factors that influence when or why ploidy variants are adaptive remains poorly understood. Our previous work found that diploid individuals repeatedly arose within ten replicate haploid populations of Saccharomyces cerevisiae, and in each case we witnessed diploid takeover within ~1800 asexual generations of batch culture evolution in the lab. The character that allowed diploids to rise in frequency within haploid populations remains unknown. Here we present a number of experiments conducted with the goal to determine what this trait (or traits) might have been. Experiments were conducted both by sampling a small number of colonies from the stocks frozen every two weeks (~ 93 generations) during the original experiment, as well through sampling a larger number of colonies at the two time points where polymorphism for ploidy was most prevalent. Surprisingly, none of our fitness component measures (lag phase, growth rate, biomass production) indicated an advantage to diploidy. Similarly, competition assays against a common competitor and direct competition between haploid and diploid colonies isolated from the same time point failed to indicate a diploid advantage. Furthermore, we uncovered a tremendous amount of trait variation among colonies of the same ploidy level. Only late-appearing diploids showed a competitive advantage over haploids, indicating that the fitness advantage that allowed eventual takeover was not diploidy per se but an attribute of a subset of diploid lineages. Nevertheless, the initial rise in diploids to intermediate frequency cannot be explained by any of the fitness measures used; we suggest that the resolution to this mystery is negative frequency-dependent selection, which is ignored in the standard fitness measures used.  相似文献   

20.
Heritable alternative reproductive phenotypes (ARPs), which differ in traits associated with competition for mates, occur across taxa. If polymorphism in the genes underlying ARPs is maintained by balancing selection, selection should return ARP proportions to their equilibrium if that equilibrium is perturbed. Here, we used an experimental evolution approach to directly test this prediction in male Rhizoglyphus robini, in which two heritable morphs occur: armored fighters and more female‐like, benign scramblers. Using selection lines nearly fixed for male morph, we constructed replicate populations consisting of 50% or 94% fighters, and allowed them to evolve for 14 generations in two types of environment: simple or spatially complex. We found that in both types of populations, the proportion of fighters converged on values within a narrow range of 0.70–0.83, although the rate of convergence was slower in the complex environment. Our results thus demonstrate balancing selection acting on polymorphism(s) underlying ARPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号