首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biobreeding (BB) rats model type 1 autoimmune diabetes (T1D). BB diabetes-prone (BBDP) rats develop T1D spontaneously. BB diabetes-resistant (BBDR) rats develop T1D after immunological perturbations that include regulatory T cell (Treg) depletion plus administration of low doses of a TLR ligand, polyinosinic-polycytidylic acid. Using both models, we analyzed CD4+CD25+ and CD4+CD45RC- candidate rat Treg populations. In BBDR and control Wistar Furth rats, CD25+ T cells comprised 5-8% of CD4+ T cells. In vitro, rat CD4+CD25+ T cells were hyporesponsive and suppressed T cell proliferation in the absence of TGF-beta and IL-10, suggesting that they are natural Tregs. In contrast, CD4+CD45RC(-) T cells proliferated in vitro in response to mitogen and were not suppressive. Adoptive transfer of purified CD4+CD25+ BBDR T cells to prediabetic BBDP rats prevented diabetes in 80% of recipients. Surprisingly, CD4+CD45RC-CD25- T cells were equally protective. Quantitative studies in an adoptive cotransfer model confirmed the protective capability of both cell populations, but the latter was less potent on a per cell basis. The disease-suppressing CD4+CD45RC-CD25- population expressed PD-1 but not Foxp3, which was confined to CD4+CD25+ cells. We conclude that CD4+CD25+ cells in the BBDR rat act in vitro and in vivo as natural Tregs. In addition, another population that is CD4+CD45RC-CD25- also participates in the regulation of autoimmune diabetes.  相似文献   

2.
This study shows that the normal thymus produces immunoregulatory CD25+4+8- thymocytes capable of controlling self-reactive T cells. Transfer of thymocyte suspensions depleted of CD25+4+8- thymocytes, which constitute approximately 5% of steroid-resistant mature CD4+8- thymocytes in normal naive mice, produces various autoimmune diseases in syngeneic athymic nude mice. These CD25+4+8- thymocytes are nonproliferative (anergic) to TCR stimulation in vitro, but potently suppress the proliferation of other CD4+8- or CD4-8+ thymocytes; breakage of their anergic state in vitro by high doses of IL-2 or anti-CD28 Ab simultaneously abrogates their suppressive activity; and transfer of such suppression-abrogated thymocyte suspensions produces autoimmune disease in nude mice. These immunoregulatory CD25+4+8- thymocytes/T cells are functionally distinct from activated CD25+4+ T cells derived from CD25-4+ thymocytes/T cells in that the latter scarcely exhibits suppressive activity in vitro, although both CD25+4+ populations express a similar profile of cell surface markers. Furthermore, the CD25+4+8- thymocytes appear to acquire their anergic and suppressive property through the thymic selection process, since TCR transgenic mice develop similar anergic/suppressive CD25+4+8- thymocytes and CD25+4+ T cells that predominantly express TCRs utilizing endogenous alpha-chains, but RAG-2-deficient TCR transgenic mice do not. These results taken together indicate that anergic/suppressive CD25+4+8- thymocytes and peripheral T cells in normal naive mice may constitute a common T cell lineage functionally and developmentally distinct from other T cells, and that production of this unique immunoregulatory T cell population can be another key function of the thymus in maintaining immunologic self-tolerance.  相似文献   

3.
CD83 expression influences CD4+ T cell development in the thymus   总被引:10,自引:0,他引:10  
Fujimoto Y  Tu L  Miller AS  Bock C  Fujimoto M  Doyle C  Steeber DA  Tedder TF 《Cell》2002,108(6):755-767
T lymphocyte selection and lineage commitment in the thymus requires multiple signals. Herein, CD4+ T cell generation required engagement of CD83, a surface molecule expressed by thymic epithelial and dendritic cells. CD83-deficient (CD83-/-) mice had a specific block in CD4+ single-positive thymocyte development without increased CD4+CD8+ double- or CD8+ single-positive thymocytes. This resulted in a selective 75%-90% reduction in peripheral CD4+ T cells, predominantly within the naive subset. Wild-type thymocytes and bone marrow stem cells failed to differentiate into mature CD4+ T cells when transferred into CD83-/- mice, while CD83-/- thymocytes and stem cells developed normally in wild-type mice. Thereby, CD83 expression represents an additional regulatory component for CD4+ T cell development in the thymus.  相似文献   

4.
CCR9 mediates chemotaxis of thymocytes in response to CCL25/thymus-expressed chemokine, and its mRNA is selectively expressed in thymus and small intestine, the two known sites of T lymphopoiesis. To examine the expression of CCR9 during lymphocyte development, we generated polyclonal Ab that recognizes murine CCR9. CCR9 was expressed on the majority of immature CD4+CD8+ (double-positive) thymocytes, but not on immature CD4(-)CD8(-) (double-negative) thymocytes. CCR9 was down-regulated during the transition of double-positive thymocytes to the CD4+ or CD8+ (single-positive) stage, and only a minor subset of CD8+ lymph node T cells expressed CCR9. All CCR9+ thymocyte subsets migrated in response to CCL25; however, CD69+ thymocytes demonstrated enhanced CCL25-induced migration compared with CD69(-) thymocytes. Ab-mediated TCR stimulation also enhanced CCL25 responsiveness, indicating that CCL25-induced thymocyte migration is augmented by TCR signaling. Approximately one-half of all gammadeltaTCR+ thymocytes and peripheral gammadeltaTCR+ T cells expressed CCR9 on their surface, and these cells migrated in response to CCL25. These findings suggest that CCR9 may play an important role in the development and trafficking of both alphabetaTCR+ and gammadeltaTCR+ T cells.  相似文献   

5.
An elusive goal in transplanting organs across histocompatibility barriers has been the induction of specific tolerance to avoid graft rejection. A considerable body of evidence exists that the thymus produces regulatory T cells that suppress the response of other T cells to antigenic stimulation. We report that TGF-beta can induce certain CD4+ T cells in the naive (CD45RA+RO-) fraction in human peripheral blood to develop powerful, contact-dependent suppressive activity that is not antagonized by anti-TGF-beta or anti-IL-10 mAbs. The costimulatory effects of TGF-beta on naive CD4+ T cells up-regulated CD25 and CTLA-4 expression, increased their transition to the activated phenotype, but decreased activation-induced apoptosis. Suppressive activity was concentrated in the CD25+ fraction. These CD4+CD25+ regulatory cells prevented CD8+ T cells from proliferating in response to alloantigens and from becoming cytotoxic effector cells. Moreover, these regulatory cells exerted their suppressive activities in remarkably low numbers and maintained these effects even after they are expanded. Once activated, their suppressive properties were Ag nonspecific. Although <1% of naive CD4+ T cells expressed CD25, depletion of this subset before priming with TGF-beta markedly decreased the generation of suppressive activity. This finding suggests that CD4+CD25+ regulatory T cells induced ex vivo are the progeny of thymus-derived regulatory T cells bearing a similar phenotype. The adoptive transfer of these regulatory T cells generated and expanded ex vivo has the potential to prevent rejection of allogeneic organ grafts.  相似文献   

6.
One of the BB rat diabetes (diabetes mellitus (DM)) susceptibility genes is an Ian5 mutation resulting in premature apoptosis of naive T cells. Impaired differentiation of regulatory T cells has been suggested as one possible mechanism through which this mutation contributes to antipancreatic autoimmunity. Using Ian5 congenic inbred rats (wild-type (non-lyp BB) and mutated (BB)), we assessed the development of BB regulatory CD8(-)4(+)25(+)T cells and their role in the pathogenesis of DM. BB rats have normal numbers of functional CD8(-)4(+)25(+)Foxp3(+) thymocytes. The proportion of CD25(+) cells among CD8(-)4(+) recent thymic emigrants is also normal while it is increased among more mature CD8(-)4(+) T cells. However, BB CD8(-)4(+)25(+)Foxp3(+) thymocytes fail to undergo homeostatic expansion and survive upon transfer to nude BB rats while Foxp3 expression is reduced in mature CD8(-)4(+)25(+) T cells suggesting that these cells are mostly activated cells. Consistent with this interpretation, peripheral BB CD8(-)4(+)25(+) T cells do not suppress anti-TCR-mediated activation of non-lyp BB CD8(-)4(+)25(-) T cells but rather stimulate it. Furthermore, adoptive transfer of unfractionated T cells from diabetic BB donors induces DM in 71% of the recipients while no DM occurred when donor T cells are depleted of CD8(-)4(+)25(+) cells. Adoptive transfer of 10(6) regulatory non-lyp BB CD8(-)4(+)25(+) T cells to young BB rats protects the recipients from DM. Taken together, these results demonstrate that the BB rat Ian5 mutation alters the survival and function of regulatory CD8(-)4(+)25(+) T cells at the post-thymic level, resulting in clonal expansion of diabetogenic T cells among peripheral CD8(-)4(+)25(+) cells.  相似文献   

7.
We have examined the development of self-peptide-specific CD4+ CD25+ regulatory T cells in lineages of transgenic mice that express the influenza virus PR8 hemagglutinin (HA) under the control of several different promoters (HA transgenic mice). By mating these lineages with TS1-transgenic mice expressing a TCR that recognizes the major I-E(d)-restricted determinant from HA (site 1 (S1)), we show that S1-specific T cells undergo selection to become CD4+ CD25+ regulatory T cells in each of the lineages, although in varying numbers. In some lineages, S1-specific CD4+ CD25+ regulatory T cells are highly abundant; indeed, TS1xHA-transgenic mice can contain as many S1-specific CD4+ T cells as are present in TS1 mice, which do not express the neo-self HA. In another lineage, however, S1-specific thymocytes are subjected to more extensive deletion and far fewer S1-specific CD4+ CD25+ regulatory T cells accumulate in the periphery. We show that radioresistant stromal cells can direct both deletion and CD4+ CD25+ regulatory T cell selection of S1-specific thymocytes. Interestingly, even though their numbers can vary, the S1-specific CD4+ CD25+ regulatory T cells in all cases coexist with clonally related CD4+ CD25- T cells that lack regulatory function. These findings show that the formation of the CD4+ CD25+ regulatory T cell repertoire is sensitive to variations in the expression of self-peptides.  相似文献   

8.
CD7 and CD28 are T cell Ig superfamily molecules that share common signaling mechanisms. To determine roles CD7 and CD28 might play in peripheral lymphocyte development and function, we have generated CD7/CD28-double-deficient mice. CD7- and CD28-single-deficient and CD7/CD28-double-deficient mice had normal levels of CD4 and CD8-single-positive T cells in thymus and spleen. However, CD28-deficient mice had decreased CD4+CD25+ T cells in spleen compared with wild-type mice, and CD7/CD28-double-deficient mice had decreased numbers of CD4+CD25+ T cells in both thymus and spleen compared with both wild-type and CD28-deficient mice. Functional studies demonstrated that CD4+CD25+ T cells from CD28-deficient and CD7/CD28-double-deficient mice could mediate suppression of CD3 mAb activation of CD4+CD25- wild-type T cells, but were less potent than wild-type CD4+CD25+ T regulatory cells. Thyroiditis developed in aged CD7/CD28-double-deficient mice (>1 year) that was not seen in age-matched control mice or single CD7- or CD28-deficient mice, thus suggesting in vivo loss of T regulatory cells allowed for the development of spontaneous thyroiditis. Taken together, these data demonstrated collaborative roles for both CD7 and CD28 in determination of number and function of CD4+CD25+ T regulatory cells in the thymus and peripheral immune sites and in the development of spontaneous thyroiditis.  相似文献   

9.
Our previous studies revealed that both the autoeffector and immunoregulatory T cells in cyclosporin A (CSA)-induced autologous graft-vs-host disease are recent thymic emigrants (RTEs). The autoeffector cells appear in and are released from the thymus during the first week of CSA treatment, whereas the immunoregulatory thymocytes appear during the second week but are not released until several days after cessation of CSA treatment. In the present study, the antigenic phenotypes of these functional T cell subsets were determined by immunomagnetic separation and flow immunocytometric analysis. During CSA wk 1, the autoeffector T cells in both the thymus and lymph node (LN) expressed a CD4+8+ double-positive (DP) phenotype, after which those in the LN became CD8 single positive (SP). Timed thymectomy experiments confirmed that the CD8-SP autoeffector T cells in LN originated from these DP RTEs. During CSA wk 2, the immunoregulatory thymocytes also displayed a DP phenotype. However, they were not exported to the periphery until several days after CSA treatment had been interrupted and they had acquired a CD4-SP phenotype. In LN, these immunoregulatory RTEs expressed the CD25+ marker characteristic of anergic/suppressor T cells. Cell separation and mixing experiments demonstrated that the autoeffector T cells persist in LN after cessation of CSA treatment, but their activity is not detectable in the presence of recently exported CD4+ T cells. Hence, the results indicate that tolerance to CSA-induced autologous graft-vs-host disease is actively mediated by CD25+CD4+ RTEs that suppress the function of CD8 autoeffector T cells.  相似文献   

10.
We investigated responsiveness to cytokines and differentiating potential of early human T cell precursors in vitro. Human CD3- CD4- CD8- (triple negative) thymocytes were highly purified by using magnetic bead columns and cell sorting. These cells proliferated for the first 3 to 4 days and then remained viable for up to 14 days in the presence of IL-7, IL-2 or IL-4 had only limited growth-promoting activity on these cells and could not maintain the cell viability. We followed the phenotypic change of triple negative thymocytes during culture with IL-7. After 7 to 14 days of culture with IL-7, a considerable proportion became CD4+ CD8+ (double positive). These cells were found to be CD3- CD4+ CD8 alpha+ beta- in contrast to common double positive thymocytes, which express low levels of CD3 and both alpha- and beta-chains of CD8. By using four-color immunofluorescence and multi-parameter cytofluorometric analysis, we could identify this novel subset in fresh thymocytes. These results suggest that the CD3- CD4+ CD8 alpha+ beta- subset exists physiologically in the human thymus and may represent an intermediate stage between triple negative and common double positive thymocytes.  相似文献   

11.
FOXP3, believed to be the regulatory T (Treg)-cell determining factor, is already expressed at the CD4+CD8+ thymocyte stage, but there is disagreement whether these cells are the precursors of mature CD4+CD8(-) Treg cells. Here, we provide a quantitative analysis of FOXP3 expression in the human thymus. We show that a subset of CD4+CD8+ cells already expressed as much FOXP3 as the FOXP3+ CD4+CD8(-) cells, and like mature Treg cells were CD127 low. In contrast to earlier data, CD8+CD4(-) thymocytes expressed significantly lower levels of FOXP3 than either the CD4+CD8+ or CD4+CD8(-) subsets. The CD4+CD8+ double-positive cells also expressed recombination-activating gene-2, suggesting that they were still immature. Although the FOXP3+ double-positive cells are thus putatively the precursors of the mature CD4+CD8(-)FOXP3+ subset, their frequency did not predict the frequency of more mature Treg cells, and analysis of T-cell antigen receptor repertoire showed clear differences between the two subsets. Although these data do not rule out an independent CD4+CD8+ Treg cell subset, they are consistent with a model of human Treg cell development in which the upregulation of FOXP3 is an early event, but the first FOXP3+ population is still immature and subject to further selection. The upregulation of FOXP3 may thus not be the final determining factor in the commitment of human thymocytes to the Treg cell lineage.  相似文献   

12.
Invariant NK T (iNKT) cells regulate immune responses, express NK cell markers and an invariant TCR, and recognize lipid Ags in a CD1d-restricted manner. Previously, we reported that activation of iNKT cells by alpha-galactosylceramide (alpha-GalCer) protects against type 1 diabetes (T1D) in NOD mice via an IL-4-dependent mechanism. To further investigate how iNKT cells protect from T1D, we analyzed whether iNKT cells require the presence of another subset(s) of regulatory T cells (Treg), such as CD4+ CD25+ Treg, for this protection. We found that CD4+ CD25+ T cells from NOD.CD1d(-/-) mice deficient in iNKT cell function similarly in vitro to CD4+ CD25+ T cells from wild-type NOD mice and suppress the proliferation of NOD T responder cells upon alpha-GalCer stimulation. Cotransfer of NOD diabetogenic T cells with CD4+ CD25+ Tregs from NOD mice pretreated with alpha-GalCer demonstrated that activated iNKT cells do not influence the ability of T(regs) to inhibit the transfer of T1D. In contrast, protection from T1D mediated by transfer of activated iNKT cells requires the activity of CD4+ CD25+ T cells, because splenocytes pretreated with alpha-GalCer and then inactivated by anti-CD25 of CD25+ cells did not protect from T1D. Similarly, mice inactivated of CD4+ CD25+ T cells before alpha-GalCer treatment were also not protected from T1D. Our data suggest that CD4+ CD25+ T cells retain their function during iNKT cell activation, and that the activity of CD4+ CD25+ Tregs is required for iNKT cells to transfer protection from T1D.  相似文献   

13.
Defective recombination of both the TCR and Ig genes results in the absence of mature lymphocytes in mice with the scid mutation. We have shown previously that the transfer of neonatal, but not adult, thymocytes results in high levels of Ig production in 100% of C.B-17-scid (SCID) mice, in contrast to the 10 to 25% of SCID mice spontaneously producing low levels of oligoclonal Ig. In this report we demonstrate that neonatal CD4+8- thymocytes were able to induce this response; the CD4+8+ and CD4-8+ subpopulations were totally inactive and CD4-8- T cells had only limited activity several weeks after transfer. The stimulation of IgM production in SCID mice was detectable by 1 wk posttransfer of CD4+8- thymocytes or splenic T cells, and could be achieved with as few as 300 cells. The ability of neonatal CD4+8- thymocytes to induce Ig diminished gradually to insignificant levels at 3 wk postbirth; this loss of function was not associated with differential survival of neonatal T cells. Neonatal CD4+8- thymocytes from C.B-17 and other H-2d strains rescued Ig production, whereas cells from H-2b, H-2a, and H-2k strains were much less effective. These results suggest that a CD4+8- subpopulation found in both neonatal thymus and peripheral lymphoid tissues is able to induce the expansion or differentiation of the small numbers of functional B lymphocytes in SCID mice, and that the inducing T cell disappears shortly after birth, perhaps during the acquisition of self-tolerance.  相似文献   

14.
Chicken CD4(+)CD25(+) cells were characterized for mammalian regulatory T cells' suppressive and cytokine production properties. Anti-chicken CD25 mAb was produced in mice and conjugated with a fluorescent tag. The specificity of the Ab against chicken CD25 was confirmed by evaluating Con A-induced CD25 upregulation in thymocytes and by quantifying the CD25 mRNA content of positive and negative cells identified by anti-chicken CD25 Ab. The percentage of CD4(+)CD25(+) cells, expressed as a percentage of CD4(+) cells, in thymus and blood was ~3-7%, in spleen was 10%, and in cecal tonsil, lung, and bone marrow was ~15%. Bursa had no detectable CD4(+)CD25(+) cells. CD25(+) cells were mostly CD4(+) in the thymus, whereas in every other organ studied, CD25(+) cells were distributed between CD4(+) and CD4(-) cells. Chicken thymic CD4(+)CD25(+) cells did not proliferate in vitro in the absence of recombinant chicken IL-2 (rCIL-2). In the presence of rCIL-2, PMA plus ionomycin or Con A stimulated CD4(+)CD25(+) cell proliferation, whereas anti-CD3 plus CD28 did not stimulate CD4(+)CD25(+) cell proliferation. Naive CD4(+)CD25(+) cells had 29-fold more IL-10 mRNA and 15-fold more TGF-β mRNA than the naive CD4(+)CD25(-) cells. Naive CD4(+)CD25(+) had no detectable IL-2 mRNA. Both naive and PMA plus ionomycin-stimulated thymic CD4(+)CD25(+) cells suppressed naive T cell proliferation. The suppressive properties were partially contact dependent. Supplementing CD4(+)CD25(+) cell coculture with rCIL-2 reversed the suppressive properties of CD4(+)CD25(+) cells. Chicken CD4(+)CD25(+) cells have suppressive properties similar to that of mammalian regulatory T cells.  相似文献   

15.
Cutting edge: cure of colitis by CD4+CD25+ regulatory T cells   总被引:36,自引:0,他引:36  
CD4(+)CD25(+) regulatory T cells have been shown to prevent T cell-mediated immune pathology; however, their ability to ameliorate established inflammation has not been tested. Using the CD4(+)CD45RB(high) T cell transfer model of inflammatory bowel disease, we show that CD4(+)CD25(+) but not CD4(+)CD25(-)CD45RB(low) T cells are able to cure intestinal inflammation. Transfer of CD4(+)CD25(+) T cells into mice with colitis led to resolution of the lamina propria infiltrate in the intestine and reappearance of normal intestinal architecture. CD4(+)CD25(+) T cells were found to proliferate in the mesenteric lymph nodes and inflamed colon. They were located between clusters of CD11c(+) cells and pathogenic T cells and found to be in contact with both cell types. These studies suggest that manipulation of CD4(+)CD25(+) T cells may be beneficial in the treatment of chronic inflammatory diseases.  相似文献   

16.
The majority of CD4+8- thymocytes are functionally immature.   总被引:5,自引:0,他引:5  
The thymus is the major site of T cell development and repertoire selection. During these processes, T cells segregate into two subsets that express either CD4 or CD8 accessory molecules, the phenotype of peripheral T cells. Analysis of CD4+8- thymocytes revealed that the majority of these cells express the heat-stable Ag (HSA) but not the nonclassical class I Ag, Qa-2. This HSA+, Qa-2- phenotype is similar to that of the less mature, CD4+8+ thymocytes. The remaining CD4+8- thymocytes possess the HSA-, Qa-2+ phenotype of peripheral T cells. To determine whether the Qa-2-, CD4+8- thymic subset is fully mature, we have analyzed the functional status of these CD4+8- subpopulations. The results indicate that only those thymocytes which express Qa-2 are fully responsive to anti-TCR stimulation in a manner analogous to peripheral T cells. The Qa-2- subset is nonresponsive to stimulation by anti-TCR antibodies that have been immobilized to plastic, even in the presence of lymphokines or syngeneic APC. This subset is, however, capable of proliferating to allogeneic cells or to anti-TCR on the surface of syngeneic APC, although not to the levels achieved by Qa-2+ thymocytes. Thus, the Qa-2- subset appears to require additional interactions which are not necessary for peripheral T cells or Qa-2+ thymocytes. Relevant to this issue, the Qa-2+ thymocyte subset does not appear until relatively late in development, and does not reach adult frequencies until several weeks after birth. These results would suggest that there is a progression from HSA+, Qa-2- to HSA-, Qa-2+ which parallels the maturation of functional responsiveness. These findings are important to understanding T cell selection since thymocytes with such a decreased responsiveness may have a differential capacity for tolerance induction. The results presented suggest that the bulk of CD4+8- thymocytes are not fully mature and that Qa-2 may serve as a marker for T cells with a more complete functional competence.  相似文献   

17.
Regulatory T cells (T(R)) play a critical role in the inhibition of self-reactive immune responses and as such have been implicated in the suppression of tumor-reactive effector T cells. In this study, we demonstrate that follicular lymphoma (FL)-infiltrating CD8+ and CD4+ T cells are hyporesponsive to CD3/CD28 costimulation. We further identify a population of FL-infiltrating CD4+CD25+GITR+ T(R) that are significantly overrepresented within FL nodes (FLN) compared with that seen in normal (nonmalignant, nonlymphoid hyperplastic) or reactive (nonmalignant, lymphoid hyperplastic) nodes. These T(R) actively suppress both the proliferation of autologous nodal CD8+CD25- and CD4+CD25- T cells, as well as cytokine production (IFN-gamma, TNF-alpha and IL-2), after CD3/CD28 costimulation. Removal of these cells in vitro by CD25+ magnetic bead depletion restores both the proliferation and cytokine production of the remaining T cells, demonstrating that FLN T cell hyporesponsiveness is reversible. In addition to suppressing autologous nodal T cells, these T(R) are also capable of suppressing the proliferation of allogeneic CD8+CD25- and CD4+CD25- T cells from normal lymph nodes as well as normal donor PBL, regardless of very robust stimulation of the target cells with plate-bound anti-CD3 and anti-CD28 Abs. The allogeneic suppression is not reciprocal, as equivalent numbers of CD25+FOXP3+ cells derived from either normal lymph nodes or PBL are not capable of suppressing allogeneic CD8+CD25- and CD4+CD25- T cells, suggesting that FLN T(R) are more suppressive than those derived from nonmalignant sources. Lastly, we demonstrate that inhibition of TGF-beta signaling partially restores FLN T cell proliferation suggesting a mechanistic role for TGF-beta in FLN T(R)-mediated suppression.  相似文献   

18.
CD4+CD25+ regulatory T cells can prevent and resolve intestinal inflammation in the murine T cell transfer model of colitis. Using Foxp3 as a marker of regulatory T cell activity, we now provide a comprehensive analysis of the in vivo distribution of Foxp3+CD4+CD25+ cells in wild-type mice, and during cure of experimental colitis. In both cases, Foxp3+CD4+CD25+ cells were found to accumulate in the colon and secondary lymphoid organs. Importantly, Foxp3+ cells were present at increased density in colon samples from patients with ulcerative colitis or Crohn's disease, suggesting similarities in the behavior of murine and human regulatory cells under inflammatory conditions. Cure of murine colitis was dependent on the presence of IL-10, and IL-10-producing CD4+CD25+ T cells were enriched within the colon during cure of colitis and also under steady state conditions. Our data indicate that although CD4+CD25+ T cells expressing Foxp3 are present within both lymphoid organs and the colon, subsets of IL-10-producing CD4+CD25+ T cells are present mainly within the intestinal lamina propria suggesting compartmentalization of the regulatory T cell response at effector sites.  相似文献   

19.
目的:研究口服卡介菌诱导免疫耐受对CD4+CD25+调节性T细胞的影响。方法:采用口服MPB制备EAE大鼠模型,随机分为BCG组(0.5mg/kg)和EAE模型组(PBS),每组各15只,连续经口灌服给药14d,同时选取15只健康大鼠作为对照组。分别于免疫后15d、27d流式细胞术检测外周血、胸腺及脾脏中CD4+CD25+T淋巴细胞百分率,ELISA检测血清IL-6、TGF-β、IgE、IgG含量。结果:与EAE模型组相比,免疫后BCG组大鼠外周血、胸腺及脾脏中CD4+CD25+T淋巴细胞百分率增加,血清IL-6、TGF-β含量上升,血清IgE、IgG抗体水平下降。结论:口服BCG通过上调淋巴器官中CD4+CD25+T淋巴细胞比例,抑制效应性T细胞活性,发挥免疫耐受作用。  相似文献   

20.
Transplantation tolerance is induced reliably in experimental animals following intrathymic inoculation with the relevant donor strain Ags; however, the immunological mechanisms responsible for the induction and maintenance of the tolerant state remain unknown. We investigated these mechanisms using TCR transgenic mice (TS1) that carry T cells specific for an immunodominant, MHC class II-restricted peptide (S1) of the influenza PR8 hemagglutinin (HA) molecule. We demonstrated that TS1 mice reject skin grafts that have transgene-encoded HA molecules (HA104) as their sole antigenic disparity and that intrathymic but not i.v. inoculation of TS1 mice with S1 peptide induces tolerance to HA-expressing skin grafts. Intrathymic peptide inoculation was associated with a dose-dependent reduction in T cells bearing high levels of TCR specific for HA. However, this reduction was both incomplete and transient, with a full recovery of S1-specific thymocytes by 4 wk. Peptide inoculation into the thymus also resulted in the generation of immunoregulatory T cells (CD4+CD25+) that migrated to the peripheral lymphoid organs. Adoptive transfer experiments using FACS sorted CD4+CD25- and CD4+CD25+ T cells from tolerant mice revealed that the former but not the latter maintain the capacity to induce rejection of HA bearing skin allografts in syngeneic hosts. Our results suggest that both clonal frequency reduction in the thymus and immunoregulatory T cells exported from the thymus are critical to transplantation tolerance induced by intrathymic Ag inoculation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号