首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Peptide deformylases (PDFs) are essential enzymes of the N-terminal protein processing pathway of eubacteria. The recent discovery of two types of PDFs in higher plants, PDF1A and PDF1B, and the detection of PDF1A in humans, have raised questions concerning the importance of deformylation in eukaryotes. Here, we have characterized fully in vitro and compared the properties of the two classes of eukaryotic PDFs, PDF1A and PDF1B, using the PDFs from Arabidopsis thaliana and Lycopersicon esculentum. We have shown that the PDFs of a given class (1A or 1B) all display similar features, independently of their origin. We also observed similar specificity of all plant PDFs for natural substrate peptides, but identified a number of biochemical differences between the two classes (1A or 1B). The main difference lies at the level of the bound cofactor, iron for PDF1B-like bacterial PDFs, and zinc for PDF1A. The nature of the metal cation has important consequences concerning the relative sensitivity to oxygen of the two plant PDFs. Investigation of the specificity of these enzymes with unusual substrates revealed additional differences between the two types of PDFs, enabling us to identify specific inhibitors with a lower affinity against PDF1As. However, the two plant PDFs were inhibited equally strongly in vitro by actinonin, an antibiotic that specifically acts on bacterial PDFs. Uptake of actinonin by A. thaliana seedlings was used to investigate the function of PDFs in the plant. Because it induces an albino phenotype, we conclude that deformylation is likely to play an essential role in the chloroplast.  相似文献   

2.
M Schroda  O Vallon  F A Wollman    C F Beck 《The Plant cell》1999,11(6):1165-1178
Dark-grown Chlamydomonas reinhardtii cultures that were illuminated at low fluence rates before exposure to high-light conditions exhibited a faster rate of recovery from photoinhibition than did dark-grown cells that were directly exposed to photoinhibitory conditions. This pretreatment has been shown to induce the expression of several nuclear heat shock protein 70 (HSP70) genes, including HSP70B, encoding a chloroplast-localized chaperone. To investigate a possible role of plastidic HSP70B in photoprotection and repair of photosystem II, which is the major target of photoinhibition, we have constructed strains overexpressing or underexpressing HSP70B. The effect of light stress on photosystem II in nuclear transformants harboring HSP70B in the sense or antisense orientation was monitored by measuring variable fluorescence, flash-induced charge separation, and relative amounts of various photosystem II polypeptides. Underexpression of HSP70B caused an increased light sensitivity of photosystem II, whereas overexpression of HSP70B had a protective effect. Furthermore, the reactivation of photosystem II after photoinhibition was enhanced in the HSP70B-overexpressing strain when compared with the wild type, both in the presence or absence of synthesis of chloroplast-encoded proteins. Therefore, HSP70B may participate in vivo both in the molecular protection of the photosystem II reaction centers during photoinhibition and in the process of photosystem II repair.  相似文献   

3.
The effects of different photooxidative stresses on the function of photosystem I were measured in vivo in Chlamydomonas reinhardtii. Pholooxidative stresses included strong light, light combined with chilling to 0 °C, and light combined with several concentrations of methyl viologen. Photosystem I function was measured in vivo using the absorbance change at 820 nm associated with P700 oxidation. Photosystem II function was measured in vivo using chlorophyll fluorescence. Strong light or light combined with chilling caused inhibition of photosystem II function earlier than inhibition of photosystem I function. When photosystem I was inhibited, however, it did not recover. Light combined with 5 mmol m?3 methyl viologen caused inhibition of photosystem I function earlier than inhibition of photosystem II. If the methyl viologen concentration was reduced to 1 mmol m?3, the damage to PSI was accelerated by addition of 90 mmol m?3 chloramphenicol. This effect of chloroamphenicol suggests a role for chloroplast-encoded proteins in protecting photosystem I against photooxidative damage caused by methyl viologen.  相似文献   

4.
N-terminal methionine excision (NME) is the earliest modification affecting most proteins. All compartments in which protein synthesis occurs contain dedicated NME machinery. Developmental defects induced in Arabidopsis thaliana by NME inhibition are accompanied by increased proteolysis. Although increasing evidence supports a connection between NME and protein degradation, the identity of the proteases involved remains unknown. Here we report that chloroplastic NME (cNME) acts upstream of the FtsH protease complex. Developmental defects and higher sensitivity to photoinhibition associated with the ftsh2 mutation were abolished when cNME was inhibited. Moreover, the accumulation of D1 and D2 proteins of the photosystem II reaction center was always dependent on the prior action of cNME. Under standard light conditions, inhibition of chloroplast translation induced accumulation of correctly NME-processed D1 and D2 in a ftsh2 background, implying that the latter is involved in protein quality control, and that correctly NME-processed D1 and D2 are turned over primarily by the thylakoid FtsH protease complex. By contrast, inhibition of cNME compromises the specific N-terminal recognition of D1 and D2 by the FtsH complex, whereas the unprocessed forms are recognized by other proteases. Our results highlight the tight functional interplay between NME and the FtsH protease complex in the chloroplast.  相似文献   

5.
Alb3 homologs Oxa1 and YidC have been shown to be required for the integration of newly synthesized proteins into membranes. Here, we show that although Alb3.1p is not required for integration of the plastid-encoded photosystem II core subunit D1 into the thylakoid membrane of Chlamydomonas reinhardtii, the insertion of D1 into functional photosystem II complexes is retarded in the Alb3.1 deletion mutant ac29. Alb3.1p is associated with D1 upon its insertion into the membrane, indicating that Alb3.1p is essential for the efficient assembly of photosystem II. Furthermore, levels of nucleus-encoded light-harvesting proteins are vastly reduced in ac29; however, the remaining antenna systems are still connected to photosystem II reaction centers. Thus, Alb3.1p has a dual function and is required for the accumulation of both nucleus- and plastid-encoded protein subunits in photosynthetic complexes of C. reinhardtii.  相似文献   

6.
Polle JE  Kanakagiri SD  Melis A 《Planta》2003,217(1):49-59
DNA insertional mutagenesis and screening of the green alga Chlamydomonas reinhardtii was employed to isolate tla1, a stable transformant having a truncated light-harvesting chlorophyll antenna size. Molecular analysis showed a single plasmid insertion into an open reading frame of the nuclear genome corresponding to a novel gene ( Tla1) that encodes a protein of 213 amino acids. Genetic analysis showed co-segregation of plasmid and tla1 phenotype. Biochemical analyses showed the tla1 mutant to be chlorophyll deficient, with a functional chlorophyll antenna size of photosystem I and photosystem II being about 50% and 65% of that of the wild type, respectively. It contained a correspondingly lower amount of light-harvesting proteins than the wild type and had lower steady-state levels of Lhcb mRNA. The tla1 strain required a higher light intensity for the saturation of photosynthesis and showed greater solar conversion efficiencies and a higher photosynthetic productivity than the wild type under mass culture conditions. Results are discussed in terms of the tla1 mutation, its phenotype, and the role played by the Tla1 gene in the regulation of the photosynthetic chlorophyll antenna size in C. reinhardtii.  相似文献   

7.
Rapid light-dependent turnover of the chloroplast-encoded D1 protein maintains photosystem II (PS II) functional over a wide range of light intensities. Following initiation of psbA mRNA translation, the elongating D1 is targeted, possibly by chloroplast signal recognition particle 54 (cpSRP54), to the thylakoid cpSecY translocation channel. Transmembrane domains of nascent D1 start interacting with other PS II core proteins already during the translocation process to ensure an efficient assembly of the multiprotein membrane complex. Here we review the progress recently made concerning the synthesis, targeting, membrane insertion and assembly to PS II of the chloroplast-encoded D1 protein and discuss the possible convergence of targeting and translocation of chloroplast- and nuclear-encoded thylakoid proteins.  相似文献   

8.
Phycobiliproteins obtained by dissociation of phycobilisomes were reassociated in vitro with intact thylakoids or isolated photosystems I and II preparations obtained from cyanophytes (prokaryotes) or green algae (eukaryotes) to form bound phycobilisome complexes. Energy transfer from Fremyella diplosiphon phycobiliproteins to chlorophyll a of reaction centers I and II was measured in: complexes containing intact thylakoids of the cyanophytes F. diplosiphon or Anacystis nidulans and the eukaryotic algae Euglena gracilis and mutants of Chlamydomonas reinhardtii; complexes containing isolated photosystem II particles of A. nidulans or C. reinhardtii; and complexes containing reaction center I of F. diplosiphon or C. reinhardtii. Energy transfer from phycoerythrin to chlorophyll a of photosystem II could be demonstrated in complexes containing phycobilisomes bound to cyanophyte thylakoids or isolated photosystem II particles of A. nidulans or C. reinhardtii. Bound phycobilisomes did not transfer energy to photosystem II within green algae thylakoids containing altered forms of light-harvesting chlorophyll a/b-protein complex (LHC) II antenna, reduced amounts of LHC II, or chlorophyll b, or chlorophyll b-less mutants, nor to chlorophyll a of photosystem I of intact thylakoids or isolated reaction centers. We conclude that phycobilisomes can form a specific and functional association with photosystem II particles of both cyanophytes and eukaryotic thylakoids. This interaction appears to be hindered by the presence of LHC II antenna in the eukaryotic thylakoids.  相似文献   

9.
PsbT is a small chloroplast-encoded hydrophobic polypeptide associated with the photosystem II (PSII) core complex. A psbT-deficient mutant (Delta psbT) of the green alga Chlamydomonas reinhardtii grows photoautotrophically, whereas its growth is significantly impaired in strong light. To understand the photosensitivity of Delta psbT, we have studied the effect of strong illumination on PSII activity and proteins. It is shown that the level of PSII activity and proteins is reduced in the Delta psbT more significantly than in wild type under strong light. When recovery of the photodamaged PSII is inhibited by a chloroplast protein synthesis inhibitor, the light-induced inactivation and degradation of PSII occur similarly in wild-type and mutant cells. On the contrary, the recovery of PSII activity after partial photoinactivation is remarkably delayed in the Delta psbT cells, suggesting that PsbT is required for efficient recovery of the photodamaged PSII complex. These results therefore present the first evidence for involvement of this small PSII polypeptide in the recovery process. Partial disintegration of the purified PSII core complex and localization of PSII proteins in the resulting PSII subcore complexes have revealed that PsbT is associated with D1/D2 heterodimer. A possible role of PsbT in the recovery process is discussed.  相似文献   

10.
Light-harvesting chlorophyll a/b-binding proteins (LHCI) associated with photosystem I (PSI) and the genes encoding these proteins have been characterized in the unicellular green alga Chlamydomonas reinhardtii, extending previous studies of the PSII-LHCII [Teramoto et al. (2001) Plant Cell Physiol. 42: 849]. In order to assign LHCI proteins in the thylakoid membranes, the PSI-LHCI supercomplex that retains all of the major LHCI proteins was purified. Seven distinct LHCI proteins were resolved from the purified supercomplex by a high-resolution SDS polyacrylamide gel electrophoresis, and their N-terminal amino acid sequences were determined. One LHCI protein (band e) was newly found, although the other six LHCI proteins corresponded to those previously reported. Genomic clones encoding these seven LHCI proteins were newly isolated and the nucleotide sequences were determined. A comprehensive characterization of all members of Lhc gene family in this alga revealed that LHCI proteins are more highly diverged than LHCII, suggesting functional differentiation of the protein components in LHCI. Neighbor joining trees were constructed for LHC proteins from C. reinhardtii and those of Arabidopsis thaliana or Galdieria sulphuraria to assess evolutionary relationships. Phylogenetic analysis revealed that (1). green algal LHCI and LHCII proteins are more closely related to one another than to LHCI proteins in red algae, (2). green algae and higher plants possess seven common lineages of LHC proteins, and (3). Type I and III LHCI proteins are conserved between green algae and higher plants, while Type II and IV are not. These findings are discussed in the context of evolution of multiple diverse antenna complexes.  相似文献   

11.
The biogenesis of photosystem II, one of the major photosynthetic protein complexes, involves a cascade of assembly-governed regulation of translation of its major chloroplast-encoded subunits. In Chlamydomonas reinhardtii, the presence of the reaction center subunit D2 is required for the expression of the other reaction center subunit D1, while the presence of D1 is required for the expression of the core antenna subunit apoCP47. Using chimeric genes expressed in the chloroplast, we demonstrate that the decreased synthesis of D1 or apoCP47 in the absence of protein assembly is due to a genuine downregulation of translation. This regulation is mediated by the 5' untranslated region of the corresponding mRNA and originates from negative feedback exerted by the unassembled D1 or apoCP47 polypeptide. However, autoregulation of translation of subunit D1 is not implicated in the recovery from photoinhibition, which involves an increased translation of psbA mRNA in response to the degradation of photodamaged D1. De novo synthesis and repair of photosystem II complexes are independently controlled.  相似文献   

12.
Bacterial peptide deformylase (PDF) belongs to a sub-family of metalloproteases that catalyse the removal of the N-terminal formyl group from newly synthesised proteins. PDF is essential in prokaryotes and conserved throughout the eubacteria. It is therefore considered an attractive target for developing new antibacterial agents. Here, we report the crystal structures of four bacterial deformylases, free or bound to the naturally occurring antibiotic actinonin, including two from the major bacterial pathogens Pseudomonas aeruginosa and Staphylococcus aureus. The overall tertiary structure is essentially conserved but shows significant differences, namely at the C terminus, which are directly related to the deformylase type (i.e. I or II) they belong to. The geometry around the catalytic metal ion exhibits a high level of similarity within the different enzymes, as does the binding mode of actinonin to the various deformylases. However, some significant structural differences are found in the vicinity of the active site, highlighting the structural and molecular requirements for the design of a deformylase inhibitor active against a broad spectrum of bacterial strains.  相似文献   

13.
Translational regulation has been identified as one of the key steps in chloroplast-encoded gene expression. Genetic and biochemical analysis with Chlamydomonas reinhardtii has implicated nucleus-encoded factors that interact specifically with the 5' untranslated region of chloroplast mRNAs to mediate light-activated translation. F35 is a nuclear mutation in C. reinhardtii that specifically affects translation of the psbA mRNA (encoding D1, a core polypeptide of photosystem II), causing a photosynthetic deficiency in the mutant strain. The F35 mutant has reduced ribosome association of the psbA mRNA as a result of decreased translation initiation. This reduction in ribosome association correlates with a decrease in the stability of the mRNA. Binding activity of the psbA specific protein complex to the 5' untranslated region of the mRNA is diminished in F35 cells, and two members of this binding complex (RB47 and RB55) are reduced compared with the wild type. These data suggest that alteration of members of the psbA mRNA binding complex in F35 cells results in a reduction in psbA mRNA-protein complex formation, thereby causing a decrease in translation initiation of this mRNA.  相似文献   

14.
We have engineered and analyzed a chloroplast mutant of Chlamydomonas reinhardtii that lacks ycf8, the chloroplast open reading frame 8, which is highly conserved in location and predicted amino acid sequence in land plants and C.reinhardtii. The ycf8 sequence was replaced with the aadA cassette which confers resistance to spectinomycin when expressed in the chloroplast. Although the mutant is able to grow phototrophically, photosystem II function and cell growth are impaired under stress conditions such as high light intensity and diminished chloroplast protein synthesis induced by spectinomycin. Use of an antibody generated against the ycf8 product has revealed that this hydrophobic polypeptide is associated with photosystem II, based on its severely reduced levels in various photosystem II-deficient mutants and on its copurification with photosystem II. This protein, therefore, appears to be (i) a novel photosystem II subunit and (ii) required for maintaining optimal photosystem II activity under adverse growth conditions.  相似文献   

15.
Polypeptide deformylase (PDF) is an essential bacterial metalloenzyme responsible for the removal of the N-formyl group from the N-terminal methionine of nascent polypeptides. Inhibition of bacterial PDF enzymes by actinonin, a naturally occurring antibacterial agent, has been characterized using steady-state and transient kinetic methods. Slow binding of actinonin to these enzymes is observed under steady-state conditions. Progress curve analysis is consistent with a two-step binding mechanism, in which tightening of the initial encounter complex (EI) results in a final complex (EI*) with an extremely slow, but observable, off-rate (t(1/2) for inhibitor dissociation >or=0.77 days). Stopped-flow measurement of PDF fluorescence confirms formation of EI and provides a direct measurement of the association rate. Rapid dilution studies establish that the potency of actinonin is enhanced by more than 2000-fold upon tightening of EI to form EI*, from K(i) = 530 nM (EI) to Ki*相似文献   

16.
The chloroplast Albino3 (Alb3) protein is a chloroplast homolog of the mitochondrial Oxa1p and YidC proteins of Escherichia coli, which are essential components for integrating membrane proteins. In vitro studies in vascular plants have revealed that Alb3 is required for the integration of the light-harvesting complex protein into the thylakoid membrane. Here, we show that the gene affected in the ac29 mutant of Chlamydomonas reinhardtii is Alb3.1. The availability of the ac29 mutant has allowed us to examine the function of Alb3.1 in vivo. The loss of Alb3.1 has two major effects. First, the amount of light-harvesting complex from photosystem II (LHCII) and photosystem I (LHCI) is reduced >10-fold, and total chlorophyll represents only 30% of wild-type levels. Second, the amount of photosystem II is diminished 2-fold in light-grown cells and nearly 10-fold in dark-grown cells. The accumulation of photosystem I, the cytochrome b(6)f complex, and ATP synthase is not affected in the ac29 mutant. Mild solubilization of thylakoid membranes reveals that Alb3 forms two distinct complexes, a lower molecular mass complex of a size similar to LHC and a high molecular mass complex. A homolog of Alb3.1, Alb3.2, is present in Chlamydomonas, with 37% sequence identity and 57% sequence similarity. Based on the phenotype of ac29, these two genes appear to have mostly nonredundant functions.  相似文献   

17.
PsbT is a small chloroplast-encoded hydrophobic polypeptide associated with the D1/D2 heterodimer of the photosystem II (PSII) reaction center and is required for the efficient post-translational repair of photodamaged PSII. Here we addressed that role in detail in Chlamydomonas reinhardtii wild type and DeltapsbT cells by analyzing the activities of PSII, the assembly of PSII proteins, and the redox components of PSII during photoinhibition and repair. Strong illumination of cells for 15 min decreased the activities of electron transfer through PSII and Q(A) photoreduction by 50%, and it reduced the amount of atomic manganese by 20%, but it did not affect the steady-state level of PSII proteins, photoreduction of pheophytin (pheo(D1)), and the amount of bound plastoquinone (Q(A)), indicating that the decrease in PSII activity resulted mainly from inhibition of the electron transfer from pheo(D1) to Q(A). In wild type cells, we observed parallel recovery of electron transfer activity through PSII and Q(A) photoreduction, suggesting that the recovery of Q(A) activity is one of the rate-limiting steps of PSII repair. In DeltapsbT cells, the repairs of electron transfer activity through PSII and of Q(A) photoreduction activity were both impaired, but PSII protein turnover was unaffected. Moreover, about half the Q(A) was lost from the PSII core complex during purification. Since PsbT is intimately associated with the Q(A)-binding region on D2, we propose that this polypeptide enhances the efficient recovery of Q(A) photoreduction by stabilizing the structure of the Q(A)-binding region.  相似文献   

18.
The goal of this research is elucidation of the molecular mechanism for the unique photosystem II (PSII) damage and repair cycle in chloroplasts. A frequently occurring, irreversible photooxidative damage inhibits the PSII charge separation reaction and stops photosynthesis. The chloroplast PSII repair process rectifies this adverse effect by selectively removing and replacing the photoinactivated D1/32-kD reaction center protein (the chloroplast-encoded psbA gene product) from the massive (>1,000 kD) water-oxidizing and O2-evolving PSII holocomplex. DNA insertional mutagenesis in the model organism Chlamydomonas reinhardtii was applied for the isolation and characterization of rep27, a repair-aberrant mutant. Gene cloning and biochemical analyses in this mutant resulted in the identification of REP27, a nuclear gene encoding a putative chloroplast-targeted protein, which is specifically required for the completion of the D1 turnover process but is not essential for the de novo biogenesis and assembly of the PSII holocomplex in this model green alga. The REP27 protein contains two highly conserved tetratricopeptide repeats, postulated to facilitate the psbA mRNA cotranslational insertion of the nascent D1 protein in the existing PSII core template. Elucidation of the PSII repair mechanism may reveal the occurrence of hitherto unknown regulatory and catalytic reactions for the selective in situ replacement of specific proteins from within multiprotein complexes.  相似文献   

19.
Peptide deformylase (PDF) is essential in prokaryotes and absent in mammalian cells, thus making it an attractive target for the discovery of novel antibiotics. We have identified actinonin, a naturally occurring antibacterial agent, as a potent PDF inhibitor. The dissociation constant for this compound was 0.3 x 10(-)(9) M against Ni-PDF from Escherichia coli; the PDF from Staphylococcus aureus gave a similar value. Microbiological evaluation revealed that actinonin is a bacteriostatic agent with activity against Gram-positive and fastidious Gram-negative microorganisms. The PDF gene, def, was placed under control of P(BAD) in E. coli tolC, permitting regulation of PDF expression levels in the cell by varying the external arabinose concentration. The susceptibility of this strain to actinonin increases with decreased levels of PDF expression, indicating that actinonin inhibits bacterial growth by targeting this enzyme. Actinonin provides an excellent starting point from which to derive a more potent PDF inhibitor that has a broader spectrum of antibacterial activity.  相似文献   

20.
The availability of the complete DNA sequence of the Chlamydomonas reinhardtii genome and advanced computational biology tools has allowed elucidation and study of the small ubiquitin-like modifier (SUMO) system in this unicellular photosynthetic alga and model eukaryotic cell system. SUMO is a member of a ubiquitin-like protein superfamily that is covalently attached to target proteins as a post-translational modification to alter the localization, stability, and/or function of the target protein in response to changes in the cellular environment. Three SUMO homologs (CrSUMO96, CrSUMO97, and CrSUMO148) and three novel SUMO-related proteins (CrSUMO-like89A, CrSUMO-like89B, and CrSUMO-like90) were found by diverse gene predictions, hidden Markov models, and database search tools inferring from Homo sapiens, Saccharomyces cerevisiae, and Arabidopsis thaliana SUMOs. Among them, CrSUMO96, which can be recognized by the A. thaliana anti-SUMO1 antibody, was studied in detail. Free CrSUMO96 was purified by immunoprecipitation and identified by mass spectrometry analysis. A SUMO-conjugating enzyme (SCE) (E2, Ubc9) in C. reinhardtii was shown to be functional in an Escherichia coli-based in vivo chimeric SUMOylation system. Antibodies to CrSUMO96 recognized free and conjugated forms of CrSUMO96 in Western blot analysis of whole-cell extracts and nuclear localized SUMOylated proteins with in situ immunofluorescence. Western blot analysis showed a marked increase in SUMO conjugated proteins when the cells were subjected to environmental stresses, such as heat shock and osmotic stress. Related analyses revealed multiple potential ubiquitin genes along with two Rub1 genes and one Ufm1 gene in the C. reinhardtii genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号