首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of new aminopteroyl-based hydroxamate derivatives were synthesized and tested in vitro in cell culture models as potential dual target drugs. These compounds were designed to target two families of enzymes, matrix metalloproteinases (MMP) and a folate enzyme, dihydrofolate reductase (DHFR). These enzymes are the components of two unrelated cellular pathways and they are often over-expressed in metastasizing tumors. In addition to the synthesis and full structural characterization of the hybrid molecules, we describe their inhibitory activities against a series of MMPs (MMP-2, MMP-7, MMP-9, MMP-14) and DHFR, as well as their antiproliferative activity in three cancer cell lines. The new hydroxamate derivatives of MTX proved to be effective inhibitors of MMPs and DHFR in the micromolar and nanomolar range, respectively. Furthermore, they showed strong antiproliferative activity against A549 cells (non-small cell lung carcinoma), and PPC-1 and Tsu-Pr1 prostate cancer cell lines. Therefore, based on the present results, these bi-functional drugs may be good candidates to target specific tumors in animal models due to potential combined effects on two pathways crucial for tumor development.  相似文献   

2.
Interstrand cross-links at T(A/T)4A sites in cellular DNA are associated with hypercytotoxicity of an anticancer drug, bizelesin. Here we evaluated whether these lethal effects reflect targeting critical genomic regions. An in silico analysis of human sequences showed that T(A/T)4A motifs are on average scarce and scattered. However, significantly higher local motif densities were identified in distinct minisatellite regions (200-1000 base pairs of approximately 85-100% AT), herein referred to as "AT islands." Experimentally detected bizelesin lesions agree with these in silico predictions. Actual bizelesin adducts clustered within the model AT island naked DNA, whereas motif-poor sequences were only sparsely adducted. In cancer cells, bizelesin produced high levels of lesions (approximately 4.7-7.1 lesions/kilobase pair/microM drug) in several prominent AT islands, compared with markedly lower lesion levels in several motif-poor loci and in bulk cellular DNA (approximately 0.8-1.3 and approximately 0.9 lesions/kilobase pair/microM drug, respectively). The identified AT islands exhibit sequence attributes of matrix attachment regions (MARs), domains that organize DNA loops on the nuclear matrix. The computed "MAR potential" and propensity for supercoiling-induced duplex destabilization (both predictive of strong MARs) correlate with the total number of bizelesin binding sites. Hence, MAR-like AT-rich non-coding domains can be regarded as a novel class of critical targets for anticancer drugs.  相似文献   

3.
4.
Protein-protein interactions play a central role in numerous processes in the cell and are one of the main fields of functional proteomics. This review highlights the methods of bioinformatics and functional proteomics of protein-protein interaction investigation. The structures and properties of contact surfaces, forces involved in protein-protein interactions, kinetic and thermodynamic parameters of these reactions were considered. The properties of protein contact surfaces depend on their functions. The contact surfaces of permanent complexes resemble domain contacts or the protein core and it is reasonable to consider such complex formation as a continuation of protein folding. Characteristics of contact surfaces of temporary protein complexes share some similarities with active sites of enzymes. The contact surfaces of the temporary protein complexes have unique structure and properties and they are more conservative in comparison with active site of enzymes. So they represent prospective targets for a new generation of drugs. During the last decade, numerous investigations were undertaken to find or design small molecules that block protein dimerization or protein(peptide)-receptor interaction, or, on the contrary, to induce protein dimerization.  相似文献   

5.
6.
The interaction of two experimental ruthenium(III)-containing antitumor complexes-Na[trans-RuCl(4)(DMSO)(Im)] (NAMI) and dichloro(1,2-propylendiaminetetraacetate)ruthenium(III) (RAP)-with DNA was investigated through a number of spectroscopic and molecular biology techniques, including spectrophotometry, circular dichroism, gel shift analysis, and restriction enzyme inhibition. It was found that both complexes slightly alter DNA conformation, modify its electrophoretic mobility, and inhibit DNA recognition and cleavage by some restriction enzymes, though they were less effective than cisplatin in producing such effects. Notably, the effects produced by NAMI on DNA were much larger than those induced by RAP. Implications of these results for the mechanism of action of ruthenium(III) antitumor complexes are discussed.  相似文献   

7.
8.
Telomerase activity is detected in most types of human tumors, but it is almost undetectable in normal somatic cells; therefore, telomerase is a promising therapeutic target. The present review describes various approaches to telomerase inhibition, namely, antisense therapy, RNA interference, and the use of ribozymes and agents interacting with the telomeric G-quadruplex. The use of these compounds in clinical research is analyzed in the review.  相似文献   

9.
Many intercalative antitumor drugs have been shown to induce reversible protein-linked DNA breaks in cultured mammalian cells. Using purified mammalian DNA topoisomerase II, we have demonstrated that the antitumor drugs ellipticine and 2-methyl-9-hydroxyellipticine (2-Me-9-OH-E+) can produce reversible protein-linked DNA breaks in vitro. 2-Me-9-OH-E+ which is more cytotoxic toward L1210 cells and more active against experimental tumors than ellipticine is also more effective in stimulating DNA cleavage in vitro. Similar to the effect of 4'-(9-acridinylamino)-methanesulfon-m-anisidide (m-AMSA) on topoisomerase II in vitro, the mechanism of DNA breakage induced by ellipticines is most likely due to the drug stabilization of a cleavable complex formed between topoisomerase II and DNA. Protein denaturant treatment of the cleavable complex results in DNA breakage and covalent linking of one topoisomerase II subunit to each 5'-end of the cleaved DNA. Cleavage sites on pBR322 DNA produced by ellipticine or 2-Me-9-OH-E+ treatment mapped at the same positions. However, many of these cleavage sites are distinctly different from those produced by the antitumor drug m-AMSA which also targets at topoisomerase II. Our results thus suggest that although mammalian DNA topoisomerase II may be a common target of these antitumor drugs, drug-DNA-topoisomerase interactions for different antitumor drugs may be different.  相似文献   

10.
Many intercalative antitumor drugs have been shown to cleave DNA indirectly through their specific effect on the stabilization of a cleavable complex formed between mammalian DNA topoisomerase II and DNA (Nelson, E.M., Tewey, K.M., and Liu, L.F. (1984) Proc. Natl. Acad. Sci. U.S.A. 81, 1361-1365). Antitumor epipodophyllotoxins (VP-16 and VM-26) which do not intercalate DNA can similarly induce protein-linked DNA breaks in cultured mammalian cells. In vitro studies using purified mammalian DNA topoisomerase II show that epipodophyllotoxins interfere with the breakage-reunion reaction of mammalian DNA topoisomerase II by stabilizing a cleavable complex. Treatment of this stabilized cleavable complex with protein denaturants results in DNA strand breaks and the covalent linking of a topoisomerase subunit to the 5'-end of the broken DNA. Furthermore, epipodophyllotoxins also inhibit the strand-passing activity of mammalian DNA topoisomerase II, presumably as a result of drug-enzyme interaction. The agreement between the in vivo and in vitro studies suggests that mammalian DNA topoisomerase II is a drug target in vivo. The similarity between the effect of epipodophyllotoxins on mammalian DNA topoisomerase II and the effect of nalidixic acid on Escherichia coli DNA gyrase suggests that the cytotoxic action of epipodophyllotoxins may be analogous to the bactericidal action of nalidixic acid.  相似文献   

11.
12.
The discussion in this short review emphasizes that the main and future source of novel natural products as leads to antitumor agents is probably in the areas of biology that cannot be seen, i.e. the microbial world. The review discusses the role of microbes in the production of secondary metabolites that were initially thought to be from marine invertebrates and goes on to discuss the potential for a number of well-known anticancer agents isolated from plant sources to actually be the products of a microbe-plant interaction and finishes with a discussion of the potential of microbial “cryptic clusters” as sources of novel agents/leads to anti-tumor treatments.  相似文献   

13.
《Bioscience Hypotheses》2008,1(6):334-335
DNA methylation changes in cancer activate and de-activate both oncogenes and anti-oncogenes. Global methylation inhibitors could therefore do as much harm as good, and more specific methylase inhibitors are needed to have a chance of being effective anti-cancer drugs.  相似文献   

14.
Two categories of trypanosomal type II topoisomerases have been isolated from trypanosomes: one is unique since it is able to realize DNA topoisomerization reactions in the absence of ATP, in contrast to the other enzyme and mammalian topoisomerase II. The biochemical properties of ATP-independent topoisomerase II from Trypanosoma cruzi are described in this report. The enzyme can decatenate trypanosome kinetoplast DNA networks, catenate supercoiled DNA molecules, unknot P4 phage DNA, and cleave double-stranded DNA. The enzyme is inhibited by various classes of drugs and is more sensitive than mammalian topoisomerase II. Therefore, trypanosome ATP-independent topoisomerase II provides a potential target for chemotherapy.  相似文献   

15.
The antitumor activity of polyacrylates of the noble metals containing argentum (argacryl), aurum (auracryl) and platinum (platacryl) has been studied using experimental murine solid tumor models (Lewis lung carcinoma and Acatol adenocarcinoma). It has been found that polyacrylates of the noble metals are capable of inhibiting tumor development by 50–90% compared to control. Auracryl that inhibits the growth of Lewis lung carcinoma and Acatol adenocarcinoma by 80 and 90%, respectively, compared to control is the most efficient among the tested compounds and can be recommended for the further profound preclinical studies.  相似文献   

16.
Rutaceous alkaloids as models for the design of novel antitumor drugs   总被引:1,自引:0,他引:1  
The chemical diversity of alkaloids in the Rutaceae is correlated with biosynthetic pathways involving various aromatic amino acid precursors, tyrosine, tryptophan, histidine, and anthranilic acid. The interest of rutaceous polyheteroaromatic alkaloids as models for the development of anticancer agents relies on their frequent ability to interact with DNA or with systems involved in the control of its topology, repair, and replication. Fagaronine and nitidine, from Zanthoxylum, demonstrate antileukemic activity, associated with topoisomerases inhibition. Evodiamine from Euodia rutaecarpa, displays antimetastatic properties. The pyranoacridone acronycine, from Sarcomelicope, exhibits antitumor activity against a broad spectrum of solid tumors. Development of synthetic analogues based on this latter natural product template followed the isolation of the unstable acronycine epoxide, which led to a hypothesis of bioactivation of acronycine by transformation of the 1,2-double bond into the corresponding oxirane. 1,2-Diacyloxy-1,2-dihydroacronycine derivatives exhibited antitumor properties, with a broadened spectrum of activity and an increased potency. The demonstration that acronycine interacted with DNA led to develop benzo[a], [b], and [c]acronycine analogs. Benzo[a] and [b] derivatives displayed significant antitumor activities. 1,2-Dihydroxy-1,2-dihydrobenzo[b]acronycine esters and diesters were active in human orthotopic models of cancers xenografted in nude mice. The activity of these compounds was correlated with their ability to give covalent adducts with DNA, involving reaction between the N-2 amino group of guanines and the ester group at the benzylic position of the drug. Cis-1,2-diacetoxy-1,2-dihydrobenzo[b]acronycine, currently developed under the code S23906-1, successfully underwent phase I and is currently under phase II clinical trials.  相似文献   

17.
Sulpha drugs act as competitive inhibitors of p-amino benzoic acid, an intermediate in the de novo folate pathway. Dihydropteroate synthase condenses sulpha drugs into sulpha-dihydropteroate (sulpha-DHP), which competes with dihydrofolate, the dihydrofolate reductase (DHFR) substrate. This designates DHFR as a possible target of sulpha-DHP. We suggest here that Plasmodium vivax DHFR is indeed the in vivo target of sulpha drugs. The wild-type DHFR expressed in Saccharomyces cerevisiae leads to cell growth inhibition, while sensitivity to the drug is exacerbated in the mutants. Contrary to what is observed with sulphanilamide, methotrexate is less effective on P. vivax-DHFR mutants than on wild-type mutant.  相似文献   

18.
Arakaki N  Kita T  Shibata H  Higuti T 《FEBS letters》2007,581(18):3405-3409
Here we show that the cell-surface expression of the alpha subunit of H(+)-ATP synthase is markedly increased during adipocyte differentiation. Treatment of differentiated adipocytes with small molecule inhibitors of H(+)-ATP synthase or antibodies against alpha and beta subunits of H(+)-ATP synthase leads to a decrease in cytosolic lipid droplet accumulation. Apolipoprotein A-I, which has been shown to bind to the ectopic beta-chain of H(+)-ATP synthase and inhibit the activity of cell-surface H(+)-ATP synthase, also was found to inhibit cytosolic lipid accumulation. These results suggest that the cell-surface H(+)-ATP synthase has a previously unsuspected role in lipid metabolism in adipocytes.  相似文献   

19.
Several antitumor drugs including DNA intercalative and non intercalative agents induce in vitro and in vivo double-stranded DNA breaks by stabilization of a topoisomerase II-DNA complex. In order to locate cleavage sites in an actively transcribed oncogene, N417 cells, originating from a human small cell lung carcinoma and containing 45-50 copies of c-myc oncogene, were treated with mAMSA, 9 hydroxyellipticine and VM 26. The presence of DNA lesions in c-myc was investigated by Southern blot hybridization with a human c-myc probe. In addition to normal bands, DNA patterns of drug treated-cells revealed the presence of new bands most likely corresponding to topoisomerase II-mediated cleavage as these bands were not found in untreated control DNA and in DNA treated with oAMSA, a biologically inactive stereoisomer of mAMSA. Major cleavage sites induced by drugs in the N417 cell c-myc locus were located in the 5' end of the c-myc exon 1 closely to some DNAse I hypersensitive sites which are assumed to reflect an activity of the gene. Therefore our data suggest that TopoII-mediated drug activity correlates with gene activity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号