首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
One hundred and forty isolates of thermophilic bacteria from the genus Thermus were screened for the presence of restriction endonuclease activity. Thermostable isoschizomers of restriction endonucleases, such as AceIII, BbvI, BglI, BsePI, FnuDII, HgiAI, MaeII, MboI, MseI, PvuII, StuI, TaqI, Tsp4CI, TspEI, XhoI and XmaIII, were isolated. Two restriction enzymes, TatI and TauI, recognizing novel degenerate sequences 5'-W (downward arrow)GTACW-3' and 5'-GCSG (downward arrow)C-3' respectively were partially purified and the recognition and cleavage sites were determined.  相似文献   

2.
Microbial degraders of poly(3-hydroxybutyrate) (PHB) were isolated from soil. Arthrobacter sp. strain W6 used not only PHB as a carbon source, but also PHAs such as poly(3-hydroxybutyrate-co-[5%]3-hydroxyvalerate), poly(3-hydroxybutyrate-co-[14%]3-hydroxyvalerate), and poly(3-hydroxybutyrate-co-[22%]3-hydroxyvalerate). PHB-depolymerase was purified to homogeneity from the culture broth of Arthrobacter sp. strain W6 by a procedure involving DEAE- and butyl-Toyopearl column chromatographies. The Mr of the enzyme was estimated to be about 47,000 by SDS-polyacrylamide gel electrophoresis. The enzyme was most active at pH 8.5 and 50 degrees C, and was inhibited by phenylmethylsulfonyl fluoride, Hg2+, Ag+, and Pb2+.  相似文献   

3.
Three denitrifying strains of bacteria capable of degrading poly(3-hydroxybutyrate) (PHB) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) were isolated from activated sludge and characterized. All of the isolates had almost identical phenotypic characteristics. They were motile gram-negative rods with single polar flagella and grew well with simple organic compounds, as well as with PHB and PHBV, as carbon and energy sources under both aerobic and anaerobic denitrifying conditions. However, none of the sugars tested supported their growth. The cellular fatty acid profiles showed the presence of C16:1omega7cis and C16:0 as the major components and of 3-OH-C10:0 as the sole component of hydroxy fatty acids. Ubiquinone-8 was detected as the major respiratory quinone. A 16S rDNA sequence-based phylogenetic analysis showed that all the isolates belonged to the family Comamonadaceae, a major group of beta-Proteobacteria, but formed no monophyletic cluster with any previously known species of this family. The closest relative to our strains was an unidentified bacterium strain LW1 (=DSM 13225) (99.9% similarity), reported previously as a 1-chloro-4-nitrobenzene degrading bacterium. DNA-DNA hybridization levels among the new isolates were more than 60%, whereas those between our isolates and strain DSM 13225 were less than 50%. The G+C content of genomic DNA of the new strains was 64 to 65 mol%. Based on these results, we concluded that the PHBV-degrading denitrifying isolates should be classified as a new genus and a new species, for which we propose the name Diaphorobacter nitroreducens. The type strain is strain NA10B (=JCM 11421=CIP 107294). We also propose to classify strain DSM 13225 as a genospecies of Diaphorobacter.  相似文献   

4.
Summary An actinomycete strain, which could produce an extracellular poly(vinyl alcohol) (PVA)-degrading enzyme, was isolated from a PVA-contaminated soil sample using PVA as the sole carbon source. The strain was identified as Streptomyces venezuelae according to the whole-nucleotide-sequence analysis of 16S rDNA, the morphological and the physiological characteristics. The strain produced 120 U/l extracellular PVA-degrading enzyme when PVA was used as the sole carbon source. When glucose was used as the sole carbon source, however, the extracellular enzyme activity was very low (12 U/l). This is the first report showing that an actinomycete strain can produce a PVA-degrading enzyme.  相似文献   

5.
【背景】炔草酯可以高效防除麦田恶性杂草,但炔草酯的生产和使用也对环境造成了破坏,对动物和人类健康造成了威胁。【目的】分离筛选炔草酯高效降解菌株,研究其降解特性,为炔草酯污染生物修复提供优良菌种资源。【方法】采集农药厂活性污泥样品,通过富集培养和含有炔草酯的LB培养基进行炔草酯降解菌株的分离,通过形态和生理生化特性以及16S rRNA基因序列分析确定其分类学地位,通过单因素试验从温度、pH、接种量和底物浓度等方面考察菌株对炔草酯的降解特性,并利用UPLC-MS分析降解产物。【结果】筛选出一株炔草酯高效降解菌株WP68,经鉴定为鞘氨醇盒菌(Sphingopyxis sp.),该菌株在37°C和pH值为8.0时,10 h内可将200 mg/L的炔草酯降解98.26%。利用UPLC-MS鉴定菌株WP68降解炔草酯的产物为炔草酸。确定了该菌株降解炔草酯的最适温度、pH值、接种量、底物浓度分别是37°C、8.0、5%、200mg/L。菌株WP68还能降解氰氟草酯和精喹禾灵。【结论】Sphingopyxis sp. WP68对炔草酯有较强的降解能力和较高耐受性,在炔草酯污染土壤修复中具有潜在的应用前景。  相似文献   

6.
The biphenyl-utilizing bacterial strain KBC101 has been newly isolated from soil. Biphenyl-grown cells of KBC101 efficiently degraded di- to nonachlorobiphenyls. The isolate was identified as Paenibacillus sp. with respect to its 16S rDNA sequence and fatty acid profiles, as well as various biological and physiological characteristics. In the case of highly chlorinated biphenyl (polychlorinated biphenyl; PCB) congeners, the degradation activities of this strain were superior to those of the previously reported strong PCB degrader, Rhodococcus sp. RHA1. Recalcitrant coplanar PCBs, such as 3,4,3,4-CB, were also efficiently degraded by strain KBC101 cells. This is the first report of a representative of the genus Paenibacillus capable of degrading PCBs. In addition to growth on biphenyl, strain KBC101 could grow on dibenzofuran, xanthene, benzophenone, anthrone, phenanthrene, naphthalene, fluorene, fluoranthene, and chrysene as sole sources of carbon and energy. Paenibacillus sp. strain KBC101 presented heterogeneous degradation profiles toward various aromatic compounds.  相似文献   

7.
A novel sulfate-reducing bacterium isolated from fuel-contaminated subsurface soil, strain PRTOL1, mineralizes toluene as the sole electron donor and carbon source under strictly anaerobic conditions. The mineralization of 80% of toluene carbon to CO2 was demonstrated in experiments with [ring-U-14C]toluene; 15% of toluene carbon was converted to biomass and nonvolatile metabolic by-products, primarily the former. The observed stoichiometric ratio of moles of sulfate consumed per mole of toluene consumed was consistent with the theoretical ratio for mineralization of toluene coupled with the reduction of sulfate to hydrogen sulfide. Strain PRTOL1 also transforms o- and p-xylene to metabolic products when grown with toluene. However, xylene transformation by PRTOL1 is slow relative to toluene degradation and cannot be sustained over time. Stable isotope-labeled substrates were used in conjunction with gas chromatography-mass spectrometry to investigate the by-products of toluene and xylene metabolism. The predominant by-products from toluene, o-xylene, and p-xylene were benzylsuccinic acid, (2-methylbenzyl)succinic acid, and 4-methylbenzoic acid (or p-toluic acid), respectively. Metabolic by-products accounted for nearly all of the o-xylene consumed. Enzyme assays indicated that acetyl coenzyme A oxidation proceeded via the carbon monoxide dehydrogenase pathway. Compared with the only other reported toluene-degrading, sulfate-reducing bacterium, strain PRTOL1 is distinct in that it has a novel 16S rRNA gene sequence and was derived from a freshwater rather than marine environment.  相似文献   

8.
Hou Y  Tao J  Shen W  Liu J  Li J  Li Y  Cao H  Cui Z 《FEMS microbiology letters》2011,323(2):196-203
An enrichment culture which completely degraded fenoxaprop-ethyl (FE) was acquired by using FE as sole carbon source. An efficient FE-degrading strain T1 was isolated from the enrichment culture and identified as Rhodococcus sp. Strain T1 could degrade 94% of 100 mg L(-1) FE within 24 h and the metabolite fenoxaprop acid (FA) was identified by HPLC/MS analysis. This strain converted FE by cleavage of the ester bond, but could not further degrade FA. Strain T1 could also efficiently degrade haloxyfop-R-methyl, quizalofop-p-ethyl, cyhalofop-butyl and clodinafop-propargyl. FE hydrolase capable of hydrolysing FE to FA was found in the cell-free extract of strain T1 by zymogram analysis. A novel gene feh encoding FE hydrolase was cloned by shotgun library construction and successfully expressed in Escherichia coli.  相似文献   

9.
The natural biotic capacity of soils to degrade gamma-hexachlorocyclohexane (gamma-HCH, lindane) was estimated using an enrichment technique based on the ability of soil bacteria to develop on synthetic media and degrade the xenobiotic compound, used as the sole source of carbon and energy. Bacterial inocula from relatively highly contaminated soils (from wood treatment factories) were found to promote efficiently the degradation of gamma-HCH, which subsequently permitted isolation of a competent gamma-HCH-degrading microorganism. The decrease of gamma-HCH concurrently with the release of chloride ions and the production of CO2 demonstrated the complete mineralization of gamma-HCH mediated by the isolate. This was confirmed by gas chromatography-mass spectrometry analyses showing that degradation subproducts of gamma-HCH included an unidentified tetrachlorinated compound and subsequently 1,2,4-trichlorobenzene and 2,5-dichlorophenol. The two linA- and linB-like genes coding, respectively, for a gamma-HCH dehydrochlorinase and a dehalogenase were characterized by using a PCR strategy based on sequence homologies with previously published sequences from Sphingomonas paucimobilis UT26. Nucleotide sequence analysis of the linA-like region revealed the presence of a 472-bp open reading frame exhibiting high homology with the linA gene from S. paucimobilis, while a preliminary study also indicated strong homology among the two linB genes. All enzymes involved in the gamma-HCH degradative pathway appear to be extracellular and encoded by genes located on the chromosome, although numerous cryptic plasmids have been detected.  相似文献   

10.
Aims: To isolate and characterize new bacteria capable of tolerating high concentrations of organic solvents at high temperature. Methods and Results: A solvent‐tolerant, thermophilic bacterium was isolated from hot spring samples at 55°C. The strain PGDY12 was characterized as a Gram‐positive bacterium. It was able to tolerate 100% solvents, such as toluene, benzene and p‐xylene on plate overlay and high concentrations of these solvents in liquid cultures. A comparison of growth showed that 0·2% (v/v) benzene and 0·15% (v/v) p‐xylene were capable of enhancing the final cell yields. Transmission electron micrographs showed the incrassation of electron‐transparent intracellular material and the distorted cytoplasm in case of the cells grown in toluene. A phylogenetic analysis based on 16S rRNA sequence data indicated that the strain PGDY12 was member of the genus Anoxybacillus. Conclusions: The thermophilic, Gram‐positive Anoxybacillus sp. PGDY12 exhibited a unique and remarkable ability to tolerate solvents at 55°C. Significance and Impact of the Study: The solvent tolerance properties are less known in thermophilic bacteria. The Anoxybacillus sp. PGDY12 is the first strictly thermophilic bacterium able to tolerate a broad range of solvents. This strain is a promising candidate for use as a high temperature biocatalyst in the biotechnological applications.  相似文献   

11.
A pentachlorophenol (PCP)-degrading bacterium was isolated from possible PCP-contaminated soil from Pusan, Korea and identified as a member of the genus Pseudomonas. It used PCP as its sole source of carbon and energy. This micro-organism was capable of degrading PCP more effectively, certified by the increase in cell density and the decrease in PCP substrate. Pseudomonas sp. Bu34 was able to degrade a much higher concentration of PCP (4000 mg l−1) than any previously reported PCP-degrading bacteria and fungi and to grow in mineral salts solution containing one of a variety of chlorophenols. In non-acclimated strain Bu34, the cell number decreased from 87 to 99·9% in 75–4000 mg l−1 PCP at 24 h. In the acclimated strain the PCP toxic effect did not appear with 75 mg l−1 PCP treatment, but 1000–4000 mg l−1 PCP decreased the cell number of strain Bu34 by 25% to 24 h and then the cell number slightly increased at 48 h. Therefore, it suggested that the maximum resistance of acclimated strain Bu34 to PCP was 4000 mg l−1 PCP. We suggest that strain Bu34 could be used as a micro-organism for the bioremediation of highly PCP-contaminated soils, water or wood products.  相似文献   

12.
Eighteen gram-negative thermotolerant poly(3-hydroxybutyrate) (PHB)-degrading bacterial isolates (T max60°C) were obtained from compost. Isolates produced clearing zones on opaque PHB agar, indicating the presence of extracellular PHB depolymerases. Comparison of physiological characteristics and determination of 16S rRNA gene sequences of four selected isolates revealed a close relatedness of three isolates (SA8, SA1, and KA1) to each other and to Schlegelella thermodepolymerans and Caenibacterium thermophilum. The fourth strain, isolate KB1a, showed reduced similarities to the above-mentioned isolates and species and might represent a new species of Schlegelella. Evidence is provided that S. thermodepolymerans and C. thermophilum are only one species. The PHB depolymerase gene, phaZ, of isolate KB1a was cloned and functionally expressed in Escherichia coli. Purified PHB depolymerase was most active around pH 10 and 76°C. The DNA-deduced amino acid sequence of the mature protein (49.4 kDa) shared significant homologies to other extracellular PHB depolymerases with a domain substructure: catalytic domain type 2—linker domain fibronectin type 3—substrate-binding domain type 1. A catalytic triad consisting of S20, D104, and H138 and a pentapeptide sequence (GLS20AG) characteristic for PHB depolymerases (PHB depolymerase box, GLSXG) and for other serine hydrolases (lipase box, GXSXG) were identified.This contribution is dedicated to Hans G. Schlegel in honor of his 80th birthday.Fabian Romen and Simone Reinhardt share first authorship.  相似文献   

13.
An addition of catalase or peroxidase into an agar plate containing poly(vinyl alcohol) (PVA), was effective for the isolation of PVA-degrading microorganisms. A Gram-negative bacterium, strain TK-2 (-group of proteobacteria), rapidly degraded a high molecular weight PVA to low molecular weight material after 1 day thereby producing oligomers of PVA as shown by gel permeation chromatography. Conversely, Sphingomonas strain TJ-7 did not produce any PVA oligomers, suggesting that the strain TJ-7 degraded PVA from the terminal ends of the molecules, whereas the strain TK-2 cleaved PVA at random.  相似文献   

14.
A novel triazophos-degrading Bacillus sp., TAP-1, was isolated from sewage sludge in a wastewater treating system of organophosphorus pesticide produced by Funong Group Co. in Jianou, Fujian, southeastern China. The isolate is a gram-positive and rod-shaped bacterium capable of hydrolyzing insecticide triazophos and was identified as a strain of Bacillus using polyphasic taxonomy combined with analysis of the morphological and physio-biochemical properties. TAP-1 could degrade triazophos through co-metabolism. When fed with nutrients such as yeast extract, peptone and glucose, TAP-1 could degrade 98.5% of TAP in the medium (100 mg/l) within 5 days. The optimal pH and temperature for the degradation were 6.5-8 and 32°C, respectively. An enzyme distribution experiment showed that the enzyme responsible for TAP degradation appeared to be intracellular.  相似文献   

15.
A Gram-positive poly(3-hydroxybutyrate) (PHB)-degrading bacterial strain was isolated from compost. This organism, identified as Bacillus megaterium N-18-25-9, produced a clearing zone on opaque NB-PHB agar, indicating the presence of extracellular PHB depolymerase. A PHB depolymerase gene, PhaZ(Bm), of B. megaterium N-18-25-9 was cloned and sequenced, and the recombinant gene product was purified from Escherichia coli. The N-terminal half region of PhaZ(Bm) shared significant homologies with a catalytic domain of other PHB depolymerases. Although the C-terminal half region of PhaZ(Bm) showed no significant similarity with those of other PHB depolymerases, that region was necessary for the PHB depolymerase activity. Therefore, this enzyme's domain structure is unique among extracellular PHB depolymerase domain structures. The addition of PHB to the medium led to a sixfold increase in PhaZ(Bm) mRNA, while the presence of glucose repressed PhaZ(Bm) expression. The maximum activity was observed at pH 9.0 at 65 degrees C.  相似文献   

16.
A novel facultatively alkaliphilic bacterium that grows on a chemically defined medium containing n-alkanes as the sole carbon source was isolated from soil. The isolate was obligately aerobic, non-motile, gram-positive, and formed metachromatic granules. It was not acidfast and did not form endospores. The cell wall contained meso-diaminopimelic acid, arabinose, and galactose; the glycan moiety of the cell wall contained acetyl residues. The bacterium was catalase-positive, oxidasenegative, and the G+C content of DNA was 70.8 mol%. According to these tests, the isolate was assigned to the genus Corynebacterium. The bacterium grew well between pH 6.2 to 10.2 and the doubling time in this pH range was 4–6 h. For the growth of the isolate, added Na+ in the culture medium stimulated growth, but was not indispensable at both pH 7.2 and pH 10.2. In addition to hydrocarbons, the isolate was able to grow on a chemically defined medium containing acetate, glucose, or fructose as the sole carbon source. Analysis of reduced minus oxidized difference spectra of whole cells showed that the bacterium only possessed less than one tenth the amount of total cytochromes as compared with Bacillus alcalophilus. The above results sugest that the bacterium has characteristics different than those of the alkaliphilic Bacillus previously described.  相似文献   

17.
Zhou  S.N.  Yang  C.Y.  Lu  Y.J.  Huang  L.  Cai  C.H.  Lin  Y.C. 《World journal of microbiology & biotechnology》1999,15(6):745-746
A chitinase was separated from the culture broth of Vibrio sp. 11211 isolated from sediment from the South China Sea. The chitinase was purified 18.3-fold with 33% recovery by ammonium sulphate precipitation and chromatography. The subunit molecular weight of the enzyme was estimated by SDS-PAGE to be about 30kDa. The enzyme showed optimum pH at 6.5 and optimum temperature at 50°C, and was stable in the pH range of 4 to 9 and at the temperature below 40°C.  相似文献   

18.
s -Triazine herbicides are used extensively in South America in agriculture and forestry. In this study, a bacterium designated as strain MHP41, capable of degrading simazine and atrazine, was isolated from agricultural soil in the Quillota valley, central Chile. Strain MHP41 is able to grow in minimal medium, using simazine as the sole nitrogen source. In this medium, the bacterium exhibited a growth rate of μ=0.10 h−1, yielding a high biomass of 4.2 × 108 CFU mL−1. Resting cells of strain MHP41 degrade more than 80% of simazine within 60 min. The atzA, atzB, atzC, atzD, atzE and atzF genes encoding the enzymes of the simazine upper and lower pathways were detected in strain MHP41. The motile Gram-negative bacterium was identified as a Pseudomonas sp., based on the Biolog microplate system and comparative sequence analyses of the 16S rRNA gene. Amplified ribosomal DNA restriction analysis allowed the differentiation of strain MHP41 from Pseudomonas sp. ADP. The comparative 16S rRNA gene sequence analyses suggested that strain MHP41 is closely related to Pseudomonas nitroreducens and Pseudomonas multiresinovorans . This is the first s -triazine-degrading bacterium isolated in South America. Strain MHP41 is a potential biocatalyst for the remediation of s -triazine-contaminated environments.  相似文献   

19.
A new thermophilic sulfate-reducing bacterium, strain TSB, that was spore-forming, rod-shaped, slightly motile and gram-positive, was isolated from a butyrate-containing enrichment culture inoculated with sludge of a thermophilic methane fermentation reactor. This isolate could oxidize benzoate completely. Strain TSB also oxidized some fatty acids and alcohols. SO inf4 sup2- , SO inf3 sup2- , S2O inf3 sup2- and NO inf3 sup- were utilized as electron acceptors. With pyruvate or lactate the isolate grew without an external electron acceptor and produced acetate. The optimum temperature for growth was 62°C. The G+C content of DNA was 52.8 mol%. This isolate is described as a new species, Desulfotomaculum thermobenzoicum.  相似文献   

20.
The intermolecular interactions of lignin with a hydrophilic polymer, poly(vinyl alcohol) (PVA), were studied using thermal analyses and FT-IR spectroscopy of a series of PVA/hardwood kraft lignin blend fibers prepared by thermal extrusion. Although two phases are observed in this blend system, some of the lignin was closely associated with the PVA in the PVA-rich phase. The crystallinity of the PVA fraction was reduced with increasing lignin content. An interaction energy density of -9.34 cal cm(-1), calculated from melting point depression data, suggests that strong intermolecular interactions exist between PVA and lignin. FT-IR analysis indicates the formation of strong intermolecular hydrogen bonds between the hydroxyl groups of PVA and lignin. Although the PVA/lignin blend system is immiscible in the bulk, the results herein show the existence of some specific intermolecular interaction between PVA and lignin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号