首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seasonality of nutrient dynamics in three morphologically different seagrass species and their sediments was examined for 1 year between November 2006 and November 2007 at four sites in the Andaman Sea, Thailand. The smaller species, Cymodocea serrulata and Halophila ovalis, showed major seasonal variation in shoot density, above- and belowground biomass, much more than expected from seasonal changes in water temperature and light conditions. All parameters showed minimum values in the dry season due to desiccation during neap tides. In contrast Enhalus acoroides showed less seasonal variation. Only limited seasonality was found in tissue N content of all species, whereas tissue P content responded to the low P concentration in the water column during the wet season. There were no differences in sediment conditions among species, and nutrient pools were generally low. Furthermore there were no significant spatial differences in seagrass and sediment nutrient dynamics, despite varying anthropogenic activity at the study sites, reflecting the oligotrophic conditions in this region.  相似文献   

2.
The dugong is the only herbivorous mammal that is strictly marine and a seagrass community specialist. The pasture available to the dugong varies with the tides because seagrass occurs in both intertidal and subtidal areas. We GPS-tracked seven dugongs within a 24 km2, intensively used seagrass habitat in subtropical Australia in winter. We modeled resource selection within the habitat by comparing the dugongs’ use of space with the distribution of seagrass in an area defined using the combined space-use of the tracked animals. Selection by dugongs for seagrass quantity (biomass) and quality (nutrients) was analyzed within six time/tide combinations to examine the influences of tidal periodicity and the diel cycle on resource selection. Dugong habitat use was consistently centered over seagrass patches with high nitrogen concentrations, except during the day at low tides when the animals had fewer habitat choices and their space use was centered over high seagrass biomass. The association of dugongs with seagrass high in starch was positive during both day and night high tides when the animals could access the intertidal areas where seagrass biomass was generally low. Associations between dugongs and seagrass species were less definite, reflecting the potential for dugongs to exploit several species. Our model of dugong resource selection suggests that nitrogen is the primary limiting nutrient for dugong populations and also confirms the preference of dugongs for high-energy foods.  相似文献   

3.
To clarify differences in community structures and habitat utilization patterns of fishes in Enhalus acoroides- and Thalassia hemprichii-dominated seagrass beds on fringing coral reefs, visual censuses were conducted at Iriomote and Ishigaki islands, southern Japan. The numbers of fish species and individuals were significantly higher in the E. acoroides bed than in the T. hemprichii bed, although the 15 most dominant fishes in each seagrass bed were similar. Cluster and ordination analyses based on the number of individuals of each fish species also demonstrated that fish community structures were similar in the two seagrass beds. Species and individual numbers of coral reef fishes which utilized the seagrass beds numbered less than about 15% of whole coral reef fish numbers, although they comprised about half of the seagrass bed fishes. Of the 15 most dominant species, 5 occurred only in the two seagrass beds, including seagrass feeders. Ten other species were reef species, their habitat utilization patterns not differing greatly between the two seagrass beds. Some reef species, such as Lethrinus atkinsoni and L. obsoletus, showed ontogenetic habitat shifts with growth, from the seagrass beds to the coral areas. These results indicate that community structures and habitat utilization patterns of fishes were similar between E. acoroides- and T. hemprichii-dominated seagrass beds, whereas many coral reef fishes hardly utilized the seagrass beds.  相似文献   

4.
Synopsis Hypoxic conditions are rare in the open ocean, but may occur during low tides in tidepools. Intertidal fishes respond to low tides in a variety of ways, including avoiding the intertidal zone during low tides, respiring in the well-oxygenated layer at the surface of the water, or simply tolerating hypoxic water. A number of intertidal fish species have the ability to leave the water and survive terrestrially for a period of time while breathing air. This paper reviews the literature on ecomorphology of amphibious intertidal fishes, suggests ecomorphological and ecophysiological approaches to clarifying the adaptations of intertidal fishes for emergence from water, and considers differences in the types of emergence behavior and activities seen in three broadly defined behavioral types. These types include the skippers, fishes that actively emerge at all phases of the tidal cycle and engage in routine terrestrial activity, the remainers, that emerge passively under cover such as rocks or vegetation by remaining in place as the tide recedes, and the tidepool emergers, that typically spend low tides in tidepools but may emerge from hypoxic water. Portioning of gas exchange between the gills and the skin, the release of CO2 into air, the effect of emergence on metabolic rate, and vertical zonation in distribution of fishes in the intertidal zone are compared for fishes in each of these behavioral styles.  相似文献   

5.
For 15 months, the composition and abundance of drift vegetation were determined from a plantdominated fringing reef at Galeta Point, Caribbean Panama. Five nets located downstream of the reef platform continuously sampled 1.0–1.3 ha of reef flat which included 137–202 m of fore reef. Time series and multiple correlation analysis were done to evaluate the dependence of drift biomass on selected physical and biological factors. Export and import rates and turnover times were derived and compared between the dominant species. Floating leaves, branches, and seeds of higher plants were the major components of imported drift with 52% of the dry weight mass, followed by algae and seagrass each with 19%, the water hyacinth Eichhornia with 2%, and floating tar with 8%. Exported biomass from the reef platform was higher in the dry-season (late November–March) than in the wet-season (April-early November). Within the 1.0–1.3 ha sampling area, export estimates ranged from 37–294 kg mo-1 for the seagrass Thalassia, 3–171 kg mo-1 for the alga Laurencia, and 3–74 kg mo-1 for the alga Acanthophora. Multiple correlation models indicated that meteorological and hydrographic conditions explained between 31 to 65% of the variance in the drift biomass and that the best predictors of exported biomass were tidal elevation and wind speed (3 week lag). Export rates increased with high tides and strong winds and decreased with elevated water temperatures. Autocorrelations of drift biomass were generally highest at 2 week intervals, suggesting that the quantity of drift removed from the platform was, in part, related to spring and neap tide cycles. Export rates were also affected by the morphology of the vegetation, development of uprights, and location on the reef platform. Import rates of terrestrial-plant debris, the hyacinth Eichhornia, the seagrass Syringodium, and the brown alga Sargassum did not exhibit pronounced seasonal patterns in abundance and averaged 60.2, 1.9, 1.1, and 2.7 g d-1m-1, respectively. Wind speed was negatively correlated with Sargassum abundance, suggesting that strong winds depleted it from nearshore waters. Floating tar averaged about 10 g d-1m-1, the highest reported in the Caribbean. The plant-dominated fringing reef at Galeta Point is shown to be a major source, as well as a recipient, of drift vegetation.  相似文献   

6.
Material exchange, biodiversity and trophic transfer within the food web were investigated in two different types of intertidal seagrass beds: a sheltered, dense Zostera marina bed and a more exposed, sparse Z. noltii bed, in the Northern Wadden Sea. Both types of Zostera beds show a seasonal development of above-ground biomass, and therefore measurements were carried out during the vegetation period in summer. The exchange of particles and nutrients between seagrass beds and the overlying water was measured directly using an in situ flume. Particle sedimentation [carbon (C), nitrogen (N) and phosphorus (P) constituents] from the water column prevailed in dense seagrass beds. In the sheltered, dense seagrass bed, a net particle uptake was found even on windy days (7–8 Beaufort). Dissolved inorganic N and orthophosphate were mainly taken up by the dense seagrass bed. At times of strong winds, nutrients were released from the benthic community to tidal waters. In a budget calculation of total N and total P, the dense seagrass beds were characterised as a material sink. The seagrass beds with sparse Z. noltii were a source of particles even during calm weather. The uptake of dissolved inorganic N in the sparse seagrass bed was low but significant, while the uptake of inorganic phosphate and silicate by seagrasses and their epiphytes was exceeded by release processes from the sediment into the overlying water. Estimates at the ecosystem level showed that material fluxes of seagrass beds in the Sylt-Rømø Bight are dominated by the dense type of Zostera beds. Therefore, seagrass beds act as a sink for particles and for dissolved inorganic nutrients. During storms, seagrass beds are distinct sources for inorganic nutrients. The total intertidal area of the Sylt-Rømø Bight could be described as a sink for particles and a source for dissolved nutrients. This balance of the material budget was estimated by either including or excluding seagrass beds. Including the subtidal part, the function of the ecosystem as a source for particles increased, supposing that all seagrass beds were lost from the area. During the vegetation period, seagrass beds act as a storage compartment for material accumulated in the living biomass of the community. There was great biodiversity among the plant and animal groups found in intertidal seagrass beds of the Sylt-Rømø Bay, representing 50–86% of the total number of species investigated, depending on the particular group. Since most species are not exclusively seagrass residents, the loss of intertidal seagrass beds would be of minor importance for biodiversity at the ecosystem level. Food web structure in seagrass beds is different from other intertidal communities. Primary production and detritus input is high, but secondary production is similar to that of unvegetated areas, although the relative importance of the trophic guilds is different. The loss of seagrass beds leads to profound alterations in the food web of the total ecosystem. Historical as well as recent changes in material fluxes and energy flow due to man-made alterations to the ecosystem are discussed.  相似文献   

7.
How are microphytobenthic biofilms adapted to the high incident irradiances and temperatures, low inorganic nutrient concentrations and high desiccation stresses on intertidal flats present in tropical environments? This study investigated biofilms subject to different environmental conditions in a range of tropical sites in Suva lagoon, Fiji. PAM fluorescence was used to measure photophysiological responses to the light climate. Biofilm colloidal carbohydrate, extracellular polymeric substances (EPS) and low molecular weight (MW) carbohydrate concentrations and diel carbohydrate production patterns were measured. Average biomass (Chl a) ranged from 15 to 36?mg?m?2, and was highest in seagrass bed sediments, but biomass was not correlated with water column or sediment porewater nutrient concentrations. Biofilm photophysiology differed significantly along a combined gradient of light and nutrient availability, with F v/F m, relative ETRmax and E k of biofilms highest in mangrove and intertidal main island sites and lowest in subtidal coral reef flats. Subtidal biofilms showed photoinhibition at irradiances > 1000?µmol?m?2. Significant correlations between Chl a and colloidal carbohydrate concentrations were present (except on intertidal sandflats), and tropical biofilms had higher ratios of colloidal carbohydrate and EPS to Chl a than temperate estuarine biofilms, probably due to a combination of high irradiance and low nutrient availability leading to the production of excess photoassimilates. The percentage of EPS present in the colloidal fraction was highest in coral sand biofilms (42%), which had the lowest nutrient concentrations, compared with other sites (25–32%). Intertidal biofilms predominantly consisted of large motile taxa and showed strong rhythms of vertical migration. During tidal emersion, high sediment temperatures (41?°C), irradiance (>2300?µmol?m?2?s?1) and salinity (49‰) stimulated downward migration. In silty sediments, migration resulted in a reduction in photosynthetic activity during the midday period but, in sands with high light penetration (to a depth of > 1700?µm), high production rates of EPS (18.2?µg carbo. µg Chl a?1 h?1) and low MW carbohydrate exudates (40.2?µg carbo. µg Chl a?1 h?1) occurred. Vertical migration, high E k and high rates of photoassimilate dumping are all adaptations to living in the tropical intertidal zone. Seagrass and reef flat biofilms consisted of a diverse non-migratory flora of motile and non-motile taxa that were not subject to such extreme temperature and irradiance conditions. Low values of photosynthetic parameters and high colloidal and EPS content indicated that these biofilms were nutrient-limited.  相似文献   

8.
Aerial surveys on seagrass (Zostera spp.) indicate a three to fourfold increase in bed area from 1994 to 2006 with up to 100 km2 or 11% of intertidal flats in the Northfrisian Wadden Sea (coastal eastern North Sea), observed at seasonal maximum in August when flying during low tide exposure 300 to 500 m above ground. When viewed from the air, difficulties in distinguishing between seagrass and green algae and a lack of contrast on dark-coloured mudflats are sources of error in areal estimates. Particularly the positioning of beds remote from shores was imprecise. However, the consistency in method over time gives confidence to the inferred positive trend which is opposite to the global pattern. Both, the spatial pattern and a recent decrease in storminess suggest that sediment stability is the key factor for seagrass dynamics in this tidal area. On exposed sand flats, high sediment mobility may be limiting and along the sheltered mainland shore land claim activities with high accretion rates may cause a scarcity of seagrass. The potential area of seagrass beds may be twice as large as the realized maximum in 2006 but eventually the rising sea level will reverse the observed seagrass expansion.  相似文献   

9.
Previous research has identified a relationship between the rate of dissipation of turbulent kinetic energy, , and the mass-transfer-limited rate of uptake by a surface, herein called the 1/4 law, and suggests this law may be applicable to nutrient uptake on coral reefs. To test this suggestion, nitrate uptake rate and gravitational potential energy loss have been measured for a section of Warraber Island reef flat, Torres Strait, northern Australia. The reef flat section is 3 km long, with a 3 m tidal range, and on the days measured, subject to 6 m s–1 tradewinds. The measured nitrate uptake coefficient, S , on two consecutive days during the rising tide was 1.23±0.28 and 1.42±0.52×10–4 m s–1. The measured loss of gravitational potential energy across the reef flat, GPE , on the same rising tides over a 178 m section was 208±24 and 161±20 kg m–1 s–2. Assuming the GPE is dissipated as turbulent kinetic energy in the water column, and using the 1/4 law, the mass-transfer-limited nitrate uptake coefficient, SMTL , on the two days was 1.57±0.03 and 1.45±0.04×10–4 m s–1. Nitrate uptake on Warraber Island reef flat is close to the mass-transfer limit, and is determined by oceanographic nitrate concentrations and energy climate.Communicated by B.C. Hatcher  相似文献   

10.
Field studies on the occurrence of meiobenthos in the water column above intertidal sandflats have been performed near the Island of Sylt in the northern Wadden Sea. Swimming meiobenthos was strongly dominated by harpacticoid copepods. Many of them have a semiplanktonic life-style. They rest in superficial sediment layers at low tide and swin in the water column at high tide. Swimming activity correlated negatively with light. The abundance in the water column was one order of magnitude higher during the night. Strong currents caused by storm tides significantly decreased meiobenthic abundance in the water column. Light and flow being constant, no significant changes of meiobenthic abundance per unit area occurred over a tidal cycle. Since holoplankton and meroplankton abundances correlated positively with the height of the water column, semiplanktonic meiobenthos may dominate the mesozooplankton in shallow waters. On an average, emergence of meiobenthos increased the mesozooplanktonic biomass by about 2% during diurnal high tides over the entire tidal cycle, and by about 50% during nocturnal high tides. Because of seasonal cycles of the dominant harpacticoids, this high contribution to planktonic biomass may be a summer phenomenon.  相似文献   

11.
Magni  Paolo  Montani  Shigeru 《Hydrobiologia》2000,432(1-3):9-23
From April 1994 to April 1996, we carried out monthly surveys on the physical and chemical variability of ebbing water at two intertidal stations near the emerged tidal flat and surface water at a nearby subtidal station, in a tidal estuary of the Seto Inland Sea, Japan. The fresh water runoff was a major source of new nitrogen (nitrate+nitrite = –2.1 × salinity + 74.3, r 2 = 0.76, p < 0.001, at the inner intertidal station). In contrast, the absence or weak correlation of ammonium, phosphate and silicate with salinity in ebbing water highlighted the importance of in situ biologically-mediated processes, including the excretory activity of intertidal dominant bivalves (Ruditapes philippinarum and Musculista senhousia) and primary producer nutrient uptake. Among suspended particulate matter (SPM), the negative correlation of Chl a with salinity (p< 0.001) suggested that an upper intertidal zone, where high microphytobenthic assemblages occur, may represent a considerable source of microalgal biomass. Whereas, a stronger correlation of POC with pheo-pigments (r 2 0.92) than with Chl a (r 2 0.44), a low fraction of living phyto-Carbon (ca. 5%) and a high pheo-pigment/Chl a ratio (ca. 3) indicated a high portion of refractory algal material and a close water–sediment coupling on the flat, in which abundant macrozoobenthos is likely to play an important role. In spite of the strong variability of this ecosystems, this study also demonstrated that highly significant seasonal patterns can be recognized in our study area. However, patterns varied depending on the different nutrient species, SPM and sites. In ebbing water, ammonium concentrations were significantly higher in the cold period (i.e. November–April: water temperature 10.0 ± 4.4 °C), when primary producer biomass decreases, while Chl a and pheo-pigment content were 4.3 and 4.8 higher in the warm period (May–October: water temperature 23.5 ± 4.2 °C), respectively. At the subtidal site, nutrients were 1.9 (silicate)–2.9 (phosphate) and SPM was 1.8 (POC)–2.1 (pheo-pigments) times higher in the warm period. On an annual basis, mean pheo-pigment and POC content was 12–25 times and 4–8 times higher on the intertidal zone than on the subtidal zone, respectively, while nutrient concentrations were within the same order of magnitude. Such a qualitative difference (i.e. nutrients vs. SPM) between sites suggests that particle deposition and/or removal is likely to occur along the estuary, resulting in a limited SPM content at the surface layer of the subtidal site, while nutrients are more directly transported into the surface layer of the subtidal zone by lower salinity water mass intrusion from the intertidal zone, most importantly during the warm period.  相似文献   

12.
This study uses information derived from cores to describe the Holocene accretion history of coral reefs in the macrotidal (up to 11 m tidal range) Buccaneer Archipelago of the southern Kimberley coast, Western Australia. The internal architecture of all cored reefs is broadly similar, constituting well-preserved detrital coral fragments, predominantly branching Acropora, in a poorly sorted sandy mud matrix. However, once the reefs reach sea level, they diverge into two types: low intertidal reefs that maintain their detrital character and develop relatively narrow, horizontal or gently sloping reef flats at approximately mean low water spring, and high intertidal reefs that develop broad coralline algal-dominated reef flats at elevations between mean low water neap and mean high water neap. The high intertidal reefs develop where strong, ebb-dominated, tidal asymmetry retains seawater over the low tide and allows continued accretion. Both reef types are ultimately constrained by sea level but differ in elevation by 3–4 m.  相似文献   

13.
The role of epiphytes in an intertidal Zostera noltii seagrass bed in Marennes-Oléron Bay was assessed in comparison with the other main benthic primary producers (Z. noltii, microphytobenthos) at two bathymetric levels and on a seasonal basis. Assemblage and biomass of epiphytes were studied using scanning electron microscopy (SEM). Z. noltii and its detrital matter followed a typical seasonal pattern: microphytobenthos was present in large quantities throughout the year representing 21% of the total biomass while detrital matter, above-ground parts and below-ground parts accounted for 65, 9 and 5%, respectively. Only two species of epiphytic diatoms, Cocconeis scutellum and Cocconeis placentula, were observed on seagrass leaves. Epiphyte biomass was very low, representing on average less than 0.001% of that of microphytobenthos or leaves. This low epiphyte biomass is linked with the absence of macroalgae and also with the low biovolume of Cocconeis, which formed a monolayer of cells on leaves. This can be explained by the severe conditions of the intertidal and the high leaf turn-over of Z. noltii leaves.  相似文献   

14.
Macroinvertebrate composition, abundance and biomass were investigated at four intertidal sites throughout the Robbins Passage wetlands, Tasmania, over a 12-month period, in order to identify differences among and within sites, and to determine whether environmental variables could explain these differences. As this region is the most important shorebird area in Tasmania, we wanted to quantify the potential food source for shorebirds within the wetlands. Thirty-five taxa from 28,928 individuals were identified, with a mean abundance of 6026.6 ind m−2 and biomass of 27.1 gDW m−2. Bivalves and gastropods dominated the assemblage in terms of abundance and biomass (79% and 60%, respectively). There was a significant interaction among tidal level, site and season for invertebrate abundance and diversity, while biomass differed significantly among sites. In general, the mid-intertidal stratum had the greatest invertebrate density and diversity, while the low intertidal stratum had the greatest biomass. Community composition varied among the four sites, with the bivalve Paphies elongata dominating at two of the sites, while gastropods and polychaetes were more abundant at the other sites. Differences in invertebrate composition and abundance could partly be explained by seagrass biomass, i.e., dry mass of seagrass leaves and roots. Areas with seagrass had increased invertebrate abundance and diversity, but mean sediment particle size, % organic carbon and % seagrass cover had no significant effect. These results will assist in the investigation of habitat use by shorebirds and the identification of important shorebird feeding areas within the wetlands. Handling editor: P. Viaroli  相似文献   

15.
A seagrass in Japan,Phyllospadix iwatensis Makino, is distributed in the lower intertidal zone and upper subtidal zone making a dense population on the Choshi coast, Japan. IntertidalP. iwatensis is able to receive sufficient light for photosynthesis but experienced severe exposure to the air, which decreased a large amount of aboveground biomass in April to June (i.e. the daytime exposure season). SubtidalP. iwatensis was never exposed throughout the year and the aboveground biomass increased gradually over the daytime exposure season. However, the maximum aboveground biomass and shoot density of the subtidal plant never exceeded that of the intertidal plant. The dense foliage, large aboveground biomass and high shoot density of both intertidal and subtidal plants is likely to be an adaptation to heavy water movement, but the subtidal plants always received insufficient light for photosynthesis as a result of having dense foliage, particularly in turbid water. In choppy and swell sea,P. iwatensis did not seem to be adapted to growing in the subtidal zone where there was shortage of light.  相似文献   

16.
Fuente de Piedra saline lake is located in an endorheic basin in the south of Spain. This lake is very shallow (0.5 m max. depth during 1987–88) and relatively large (± 1350 ha). It is a temporary playa lake, showing irregular cycles, with frequent seasonal drought and a high degree of unpredictability. The lake was sampled monthly during a relatively rainy year (1987–88, 10.5 months permanence). The result of combined analyses for environmental variables (salinity, temperature and soluble inorganic forms of nitrogen and phosphorus), variables related to biological activity (chlorophyll a, sediment organic matter and redox potential) and the direct analysis of the planktonic community, shows the existence of two periods of dominance by autotrophs. The first occurs during winter, exhibits a progressively higher surface to volume ratio for phytoplankton and is followed in the spring by high zooplankton densities (Moina salina, Fabrea salina) and very low phytoplankton densities, suggesting the existence of a period with a detritus-based food web. The summer period coincides with a community better adapted to high salinities that is dominated by Dunaliella salina, D. viridis, diatoms and the ciliate Fabrea salina, and associated with high ammonium concentrations. A new period of organic matter accumulation could be facilitated, in the last moments before the lake dries, by a progressive decrease in zooplankton abundance.  相似文献   

17.
Animals living on upper intertidal mudflats experience habitat desiccation during neap tides when water does not flood the habitat. Individuals of the manicure crab Cleistostoma dilatatum construct cone-shaped towers at the entrance of their burrows, in which they remain during neap tides. These towers are the tallest known structures compared to body size built by crabs living on intertidal flats. The frequency of tower construction followed semilunar tidal cycles with most building done prior to neap tides when few crabs were active on the mudflat surface. Bigger crabs tended to make taller and wider towers with a wider pinhole on the top. These towers may regulate the microclimate in burrows.  相似文献   

18.
ABSTRACT Quantifying the factors influencing behaviors of aquatic mammalian grazers may enhance the generic understanding of grazer ecology. We investigated diel and tidal patterns in movements of the dugong (Dugong dugon) by Global Positioning System—tracking 12 animals in 5 inshore—intertidal and 3 offshore—subtidal habitats along the coast of Queensland, Australia. We examined effects of tide height and time of day on the dugong's distance from 1) the nearest coast, 2) water >3 m deep, 3) actual water depth (bathymetry + tide ht) experienced, and 4) distribution of the directions of movements. Both tidal and diel cycles influenced dugong movement. Tracked dugongs tended to be closer to shore at high tide than at low tide and closer to shore at night than during the day. Onshore movement was more prevalent on incoming tides and in the afternoon and evening. Offshore movement was more prevalent on outgoing tides and from midnight through the morning until midday. Tidal and diel variation in water depths used by the inshore—intertidal dugongs was small, but probably underestimated, hidden by a sampling bias in the telemetry equipment. Onshore movement at high tide allowed dugongs to exploit intertidal seagrass beds. Dugongs are closer to shore in afternoons and evenings than in mornings. This behavior may be related to the avoidance of predators or watercraft. Our findings can be used to predict spatial patterns of dugongs within areas of conservation management significance and to assess, avoid, and mitigate adverse effects of anthropogenic disturbance.  相似文献   

19.
Reproduction in iteroparous marine organisms is often timed with abiotic cycles and may follow lunar, tidal amplitude, or daily cycles. Among intertidal marine invertebrates, decapods are well known to time larval release to coincide with large amplitude nighttime tides, which minimizes the risk of predation. Such bimonthly cycles have been reported for few other intertidal invertebrates. We documented the reproduction of 6 gastropod species from Panama to determine whether they demonstrate reproductive cycles, whether these cycles follow a 2‐week cycle, and whether cycles are timed so that larval release occurs during large amplitude tides. Two of the species (Crepidula cf. marginalis and Nerita scabricosta) showed nonuniform reproduction, but without clear peaks in timing relative to tidal or lunar cycles. The other 4 species show clear peaks in reproduction occurring every 2 weeks. In 3 of these species (Cerithideopsis carlifornica var. valida, Littoraria variegata, and Natica chemnitzi), hatching occurred within 4 days of the maximum amplitude tides. Siphonaria palmata exhibit strong cycles, but reproduction occurred during the neap tides. Strong differences in the intensity of reproduction of Cerithideopsis carlifornica, and in particular, Littoraria variegata, between the larger and smaller spring tides of a lunar month indicate that these species time reproduction with the tidal amplitude cycle rather than the lunar cycle. For those species that reproduce during both the wet and dry seasons, we found that reproductive timing did not differ between seasons despite strong differences in temperature and precipitation. Overall, we found that most (4/6) species have strong reproductive cycles synchronized with the tidal amplitude cycle and that seasonal differences in abiotic factors do not alter these cycles.  相似文献   

20.
The coexistence of multiple species within a trophic level can be regulated by consumer preferences and nutrient supply, but the influence of these factors on the co-occurrence of seagrass species is not well understood. We examined the biomass and density responses of two seagrass species in the Florida Keys Reef Tract to grazing pressure near patch reefs, and evaluated how nutrient enrichment impacted herbivory dynamics. We transplanted Halodule wrightii (shoalgrass) sprigs into caged and uncaged plots in a Thalassia testudinum (turtlegrass) bed near a patch reef. Nutrients (N and P) were added to half of the experimental plots. We recorded changes in seagrass shoot density, and after three months, we measured above- and belowground biomass and tissue nutrient content of both species. Herbivory immediately and strongly impacted H. wrightii. Within six days of transplantation, herbivory reduced the density of uncaged H. wrightii by over 80%, resulting in a decrease in above- and belowground biomass of nearly an order of magnitude. T. testudinum shoot density and belowground biomass were not affected by herbivory, but aboveground biomass and leaf surface area were higher within cages, suggesting that although herbivory influenced both seagrass species, T. testudinum was more resistant to herbivory pressure than H. wrightii. Nutrient addition did not alter herbivory rates or the biomass of either species over the short-term duration of this study. In both species, nutrient addition had little effect on the tissue nutrient content of seagrass leaves, and N:P was near the 30:1 threshold that suggested a balance between N and P. The different impacts of grazing on these two seagrass species suggest that herbivory may be an important regulator of the distribution of multiple seagrass species near herbivore refuges like patch reefs in the Caribbean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号