首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. We studied vertical and horizontal distribution of macroinvertebrates within a dense stand of Chara spp. in Lake Krankesjön, southern Sweden. Invertebrates were sampled at three depths within the vegetation and at three distances from the vegetation edge during day and night in July and August. Corresponding samples of oxygen content of the water were taken.
2. The densities (number of invertebrates per unit plant biomass) of most invertebrate taxa were generally lower in the upper layers of the vegetation than in the layers close to the sediment. The densities of several taxa ( Asellus aquaticus , Cloëon sp. and Polycentropodidae), as well as total density of invertebrates, were higher at the edge than in the innermost parts of the macrophyte stand, whereas snail densities generally were highest at the innermost sites.
3. Densities of A. aquaticus , Chironomidae larvae and Helobdella stagnalis generally increased at night. These taxa appear to undertake a diel vertical migration within the vegetation, towards, or even down to the sediment in daytime and up into the vegetation, in some cases to the vegetation surface, at night. Factors underlying the diel vertical migration are discussed, as are their ecological consequences.  相似文献   

2.
3.
The occurrence of macrophyte in three high Andean lakes of Ecuador, Lago San Pablo, Laguna La Mica and Lago Cuicocha was recorded in 5-9 transects per lake. The first two lakes are eutrophic, the third is an extremely oligotrophic caldera lake. The dominant species in eutrophic lakes are Ceratophyllum demersum, Myriophyllum quitense, Polamogeton illinoensis, P. striatus and Elodea matthewsii. In the oligotrophic lake P. pectinatus, P. illinoensis, and the Characeae Chara rusbyana, Ch. globularis and Nitella acuminata occur. The maximum depth of the macrophyte's presence can be used as an indicator of the trophic state, ranging from about 5 m in Mica to 35 m in Cuicocha. The bioindication value of the macrophyte species in these high Andean lakes is low, because few species occur and because some of them are not specific to environmental conditions.  相似文献   

4.
Variation in substrate association types and maximum size of aquatic insects were studied in a vegetated littoral zone of three lake basins. The basins differed from each other in trophic status, biomass of benthivorous fish, and abundance of macrophytes. Four types of substrate association – swimmers, crawlers, semisessiles and burrowers, respectively – were assumed to represent decreasing vulnerability to fish predators. Large-sized species were also hypothesised to be more vulnerable to fish predators. The distributions of species traits were examined in relation to vegetation density. Inferring from ``predation hypothesis' opposite selection pressures on the species traits were expected along the vegetation density. Dense macrophyte beds were thought to be dominated by invertebrate predators and open water by fish predators, since the predation efficiency of fish decreases in complex environments. In the case of invertebrate predator domination, large size and higher activity should be favoured traits among the prey species. Distribution patterns of modes of the two studied traits were explored separately for predatory and non-predatory insects. As expected, swimmers and large-sized crawlers were characteristic of the insect assemblages of dense macrophyte beds. The densities of Odonata, Corixidae, Dytiscidae, Ephemeroptera and Sialidae were higher among macrophytes than in open water, where these insect taxa were possibly depleted by fish. On the other hand, the small-sized and fairly immobile Chironomidae were the most abundant group in open water. These results support the existence of a predator transition zone among littoral vegetation, ranging from domination of invertebrate predation among the dense beds to that of fish predation in open water.  相似文献   

5.
River Atna is situated in south-eastern Norway and stretches from approx. 1400 m a.s.l. in the Rondane Mountains, through Lake Atnsjøen, at 701 m a.s.l.; to the confluence with River Glomma at 338 m a.s.l. The catchment area is 1323 km2, oligotrophic and very susceptible to acid precipitation. The river water is very poor in nutrients and ions, and pH varies from 5.0 to 7.2. Samples were taken each year from 1987 to 2002 at three to five localities from 1280 to 380 m a.s.l. Insect larvae were collected by Surber sampling and by kick sampling. Malaise traps were used to collect adults of Plecoptera, Trichoptera, Chironomidae and Limoniidae. A total of 16 taxa of Ephemeroptera, 24 taxa of Plecoptera, 39 taxa of Trichoptera, 125 taxa of Chironomidae and 52 taxa of Limoniidae, were identified. Our results from Atna provide some support for a zonation of the river based on zoobenthos. The occurrence and abundance of functional groups among the Plecoptera, Trichoptera, and Chironomidae are discussed in relation to the River Continuum Concept (RCC). Our conclusion is that grazers dominate in the zoobenthos in streams in the treeless alpine region in Norway. Natural lakes, which occur in most watercourses in Norway, appear to cause a disturbance in relation to the original RCC concept, as the zoobenthos community in and below the lake outlet is dominated by collectors (filter feeders). The pattern found in the Atna watercourse is probably a general pattern for a northern watercourse in the Holarctic, where the glacial periods created lakes in most watercourses. The results of the long term sampling in Atna are discussed in relation to the practicalities and the cost-benefit of zoobenthos in efficient bio-monitoring in rivers.  相似文献   

6.
Aim Anthropogenic climate change is expected to result in the complete loss of glaciers from the high mountains of tropical Africa, with profound impacts on the hydrology and ecology of unique tropical cold‐water lakes located downstream from them. This study examines the biodiversity of Chironomidae (Insecta: Diptera) communities in these scarce Afroalpine lake systems, in order to determine their uniqueness in relation to lowland African lakes and alpine lakes in temperate regions, and to evaluate the potential of Afroalpine Chironomidae as biological indicators to monitor future changes in the ecological integrity of their habitat. Location Mount Kenya (Kenya) and Rwenzori Mountains (Uganda). Methods The species composition of Afroalpine chironomid communities was assessed using recent larval death assemblages extracted from the surface sediments of 11 high‐mountain lakes between 2900 and 4575 m. Results were compared with similar faunal data from 68 East African lakes at low and middle elevation (750–2760 m), and with literature records of Chironomidae species distribution in sub‐Saharan Africa, the Palaearctic region and elsewhere. All recovered taxa were fully described and illustrated. Results The 11‐lake analysis yielded 1744 subfossil chironomid larvae belonging to 16 distinct taxa of full‐grown larvae, and three taxa of less differentiated juveniles. Eleven of these 16 are not known to occur in African lakes at lower elevation, and eight taxa (or 50% of total species richness) appear restricted to the specific habitat of cold lakes above 3900 m, where night‐time freezing is frequent year‐round. The faunal transition zone coincides broadly with the Ericaceous zone of terrestrial vegetation (c. 3000–4000 m). Snowline depression during the Quaternary ice ages must have facilitated dispersion of cold‐stenothermous species among the high mountains of equatorial East Africa, but less so from or to the Palaearctic region via the Ethiopian highlands. Main conclusions Chironomid communities in glacier‐fed lakes on Africa's highest mountains are highly distinct from those of lowland African lakes, and potentially unique on a continental scale. By virtue of excellent preservation and their spatial and temporal integration of local community dynamics, chironomid larval death assemblages extracted from surface sediments are powerful biological indicators for monitoring the hydrological and ecological changes associated with the current retreat and loss of Africa's glaciers.  相似文献   

7.
1. Rainbow Trout (Oncorhynchus mykiss [Walbaum]) is commonly stocked as a sport fish throughout the world but can have serious negative effects on native species, especially in headwater systems. Productive fish‐bearing lakes represent a frequently stocked yet infrequently studied system, and effects of trout in these systems may differ from those in headwater lakes. 2. We used a Before‐After Control‐Impact (BACI) design to determine how stocked trout affected assemblage‐level and taxon‐level biomass, abundance and average length of littoral invertebrates in a stocked lake relative to three unstocked control lakes in the boreal foothills of Alberta, Canada. Lakes were studied 1 year before and for 2 years after stocking. Because characteristics of productive fish‐bearing lakes should buffer impacts of introduced fish, we predicted that trout would not affect assemblage‐level structure of littoral invertebrates but might reduce the abundance or average length of large‐bodied taxa frequently consumed by trout. 3. Relative to the unstocked control lakes, biomass, but not abundance, of the littoral invertebrate assemblage was affected indirectly by trout through increases of some taxa after trout stocking. At the individual taxon‐level, trout stocking did not affect most (23 of the 27) taxa, with four taxa increasing in abundance or biomass after stocking. Only one taxon, Chironomidae, showed evidence of size‐selective predation by trout, being consumed frequently by trout and decreasing significantly in average length after stocking. 4. Our results contrast with the strong negative effects of trout stocking on invertebrate assemblages commonly reported from headwater lakes. A combination of factors, including large and robust native populations of forage fish, the generalised diet of trout, overwinter aeration, relatively high productivity and dense macrophyte beds, likely works in concert to reduce potentially negative effects of stocked trout in these systems. As such, productive, fish‐bearing lakes may represent a suitable system for trout stocking, especially where native sport fish populations are lacking.  相似文献   

8.
High densities of habitat modifiers can dramatically alter the structure of ecosystems. Whereas spawning sockeye salmon (Oncorhynchus nerka) dig nests that cover over 2 m2 and are at least 20 cm deep, and can spawn at high densities, relatively little attention has been devoted to investigating the impacts of this disturbance. We hypothesized that this temporally and spatially predictable bioturbation has large impacts on the coastal aquatic habitats used by sockeye. We experimentally investigated the impacts of disturbance caused by spawning sockeye in two streams and two lakes in Alaska by excluding salmon from 2.25 m2 plots where they traditionally spawn. We sampled exclusions and control plots before, during, and after spawning. During sockeye spawning, fine sediment accumulated in areas where sockeye were excluded from spawning. In addition, sockeye spawning significantly decreased algal biomass by 80% compared to exclusion plots. We found mixed effects of spawning on the invertebrate assemblage. Tricladida and Chironomidae densities increased by 3x in exclusion plots relative to control plots in one creek site. However, for most taxa and sites, invertebrate densities declined substantially as spawning progressed, regardless of experimental treatment. Habitat modification by spawning salmon alters both community organization and ecosystem processes.  相似文献   

9.
Highly specific environmental factors such as the presence of strongly mineralized water, oxygenation of the water down to 10 m, a low trophic status of the water and low organic matter content in the bottom sediments, were found in the studied post-exploitation Lake Piaseczno. Of the 42 macroinvertebrate taxa found, Oligochaeta (Tubificidae) and Chironomidae predominated. Almost exclusively ubiquitous species were found, except for some chironomid taxa recorded for the first time in Poland. The most diversified faunal communities occurred at 1 m water depth whereas the highest densities were found at 5 m. At the deepest points studied only oligochaetes and Chaoborus flavicans were found. There was no correlation between organic matter content and macrofauna densities. Differences in inhabitation at the studied transects could result from various environmental factors such as the degree of macrophyte cover and protection from the wind. Undisturbed transects overgrown by macrophytes had a similar community composition and higher faunal densities than those which were less protected.  相似文献   

10.
长江中下游湖群大型底栖动物群落结构及影响因素   总被引:3,自引:0,他引:3  
蔡永久  姜加虎  张路  陈宇炜  龚志军 《生态学报》2013,33(16):4985-4999
长江中下游地区是我国淡水湖泊分布最为密集的区域,其中面积大于10 km2的湖泊总面积占相同级别中国淡水湖泊总面积的51.3%。目前对本地区湖泊大型底栖动物研究主要是关于单个湖泊或几个湖泊之间的比较,将区域内湖泊作为一个整体来分析的研究较少。为揭示现阶段长江中下游浅水湖泊底栖动物群落现状及其主要影响因素,于2008年和2009年夏季对本地区5个湖群69个湖泊大型底栖动物和水化学进行了调查,并分析区域过程和局域环境条件在决定该地区底栖群落结构中的相对重要性。结果表明水体矿化度、电导率及氮磷指标在不同湖群间具有显著差异,而高锰酸盐指数、叶绿素a及营养状态指数无显著差异。密度方面,以寡毛类和摇蚊幼虫为优势类群的湖泊共46个,占总数量的66.7%,以螺类为优势类群之一的湖泊16个,占总数量的23.2%;生物量方面,以螺类为优势的湖泊数量最多(33个),占总数量的46.4%,但以寡毛类和摇蚊幼虫占优势的湖泊亦有27个,占总数量的39.1%,双壳类仅在9个湖泊占据优势。典范对应分析结果表明该地区底栖动物群落结构是局域环境条件和区域过程共同作用的结果,两类因子共解释了33.9%的底栖动物群落变异,其中局域环境因子占被解释量的48.1%,空间变量占35.4%。空间变量较高的解释量表明对整个长江中下游地区湖泊而言,区域过程对底栖动物的分布也起着非常重要的作用。  相似文献   

11.
We investigated the influence of macrophyte composition on ciliate community structure in a large, shallow, eutrophic Lake Võrtsjärv. We hypothesized that macrophyte composition must have strong influence on the dispersal of ecologically different ciliate groups in a shallow lake and that more diverse macrophyte stands cause also a greater diversity in the ciliate community. In Võrtsjärv macrophyte distribution is spatially strongly polarized both in east–west and north–south directions in relation to abiotic factors. Phragmites australis and Myriophyllum spicatum were the most widespread species occurring in most parts of the lake. Correlation of environmental, macrophyte and planktonic ciliate variables confirmed the suggested spatial gradients. More diverse macrophyte stands supported a high species richness and abundance of epiplanktonic community but showed negative influence on the number and abundance of euplanktonic ciliate taxa. Opposite trends were found relative to the abundance of P. australis. Benthic ciliates showed a similar distribution pattern to euplanktonic taxa being most abundant in sites were the Shannon–Weaver index for macrophytes was low. Strong polarizing effect of the lake's vegetation on planktonic ciliate diversity was reflected in correlations of the number of ciliate taxa as well as the numbers of eu- and epiplanktonic taxa with geographic co-ordinates.  相似文献   

12.
1. To evaluate the effect of habitat patch heterogeneity on abundance and growth of macroinvertebrates in arctic lakes, macroinvertebrate abundance, individual biomass, and potential food resources were studied in three patch types in two arctic lakes on the Alaskan North Slope near the Toolik Lake Field Station. An experiment was conducted to determine which sediment patch type supported higher growth rates for Chironomus sp., a commonly occurring macroinvertebrate. 2. Potential organic matter (OM) resources were significantly higher in both rock and macrophyte patches than in open‐mud patches. Total macroinvertebrate densities in both lakes were highest in rock patches, intermediate in macrophytes and lowest in open‐mud. The open‐mud patches also had lower species richness compared with other patch types. Additionally, individual biomass for one clam species and two chironomid species was significantly greater in rock patches than in open‐mud. 3. In a laboratory experiment, Chironomus showed two to three times greater mass increase in sediments from macrophyte and rock patches than from open‐mud patches. Rock and macrophyte experimental sediments had at least 1.5 × the percentage OM as open‐mud sediments. 4. Chlorophyll a appeared to be the best predictor for invertebrate abundances across all patch types measured, whereas OM content appeared to be the variable most closely associated with Chironomus growth. 5. Our results combined with previous studies show that the relationships between macroinvertebrate community structure, individual growth, and habitat heterogeneity are complex, reflecting the interaction of multiple resources, and biotic interactions, such as the presence or absence of a selective vertebrate predator (lake trout, Salvelinus namaycush).  相似文献   

13.
14.
Macroinvertebrates play a key role in the littoral zone of lakes. Macroinvertebrate community composition is closely linked to habitat conditions. To date, there have been few attempts to relate macroinvertebrates to habitat factors in lakes. In this study, nine mainly oligotrophic lakes from throughout New Zealand were surveyed for macroinvertebrates. The lakes were selected to represent a range of suspended sediment loading and lake level regimes. Within each lake, several sites were selected to provide a range of exposure to wave action. A multiple regression approach was taken to relate macroinvertebrate community composition and habitat characteristics. The results of the analysis suggest that the littoral zone of the lakes we studied could be divided into four general habitats. The first is the wave wash zone characterised by coarse substrates and macroinvertebrate taxa usually associated with lotic environments, such as Ephemeroptera and Plecoptera. The second habitat is associated with macrophytes and is limited at the top by wave action and at depth by light attenuation. In this zone, the snail Potamopyrgus antipodarum is dominant, along with Trichoptera and Odonata. At the base of the macrophytes is the detrital habitat characterised by fine, organic rich sediments and dominated by chironomids, oligochaetes and Trichoptera. At depths below the macrophyte zone, fine sediments are found, and bivalves such as the freshwater mussel Hyridella menziesi are common. While macroinvertebrate abundance can be highly variable, some general predictions of community structure can be made based on a few key environmental factors. Abundance of snails Odonata and Trichoptera was positively related to macrophyte biomass. Some macroinvertebrate groups such as oligochaetes, chironomids, snails and bivalves were more common in fine substrates, while Ephemeroptera were characteristic of coarse substrates. Detrital biomass was important for most of the macroinvertebrate groups studied showing a positive relationship for oligochaetes and Trichoptera and a negative relationship for Ephemeroptera and Plecoptera.  相似文献   

15.
The decline of species richness with altitude is one of the most obvious patterns in ecology and results from the combination of ecological and evolutionary mechanisms. In harsh high-altitude environments, the effect of altitude usually overrules other environmental variables related to biodiversity. Studies using species richness along altitude gradients in high altitude are relatively numerous for lakes, but not for ponds. However, due to their special features, such as small size, high isolation and regional variability, ponds have been proved to be different systems compared to lakes. In high-altitude waterbodies, species of the family Chironomidae often dominate in benthic invertebrate communities and thus serve as an ideal model to study aquatic community changes along an altitude gradient. However, due to the time-consuming processing and expertise needed to identify the species, chironomids are often excluded from regular surveys. In the present study, we sampled 66 Tatra ponds over a 1100-m altitude gradient for benthic invertebrates, with special attention to chironomids. Out of the total 122 taxa collected, Chironomidae constituted the richest group with 58 taxa, being present in all the study ponds. The most diverse pond supported 13 chironomid taxa, and mean diversity was 6 taxa/pond. While total invertebrate richness decreased with altitude, chironomid richness showed only a weak negative response to altitude. The proportion of total chironomid diversity made up of Tanypodinae and Chironominae subfamilies decreased with altitude, while the opposite trend was recorded for the proportion of Diamesinae and Orthocladiinae.  相似文献   

16.
1. A sediment core (representing 250–300 years) was taken from each of three lakes of conservation interest and contrasting trophic status in the English Lake District: Wastwater, Bassenthwaite Lake and Esthwaite Water. Lithostratigraphic analyses, radiometric dating and analysis of fossil diatoms were carried out.
2. Transfer functions, based on the diatoms, were used to reconstruct total phosphorus (TP) and, thus, eutrophication at the study lakes. In Wastwater, changes in lake pH were also reconstructed.
3. The lakes were also classified according to their present macrophyte flora, the latter being compared with previous records.
4. The fossil diatoms of Wastwater were continuously dominated by taxa typical of oligotrophic, circumneutral waters, indicating that the lake has not been enriched or acidified in the last 250 years. The aquatic macrophyte flora has probably remained unchanged since before the Industrial Revolution.
5. The diatom assemblages of both Bassenthwaite Lake and Esthwaite Water began to change in the mid-1800s. Further change occurred from the 1960s, at the onset of a recent period of eutrophication. These two lakes have experienced continued nutrient enrichment throughout the 1970s, 80s and 90s, largely associated with increasing phosphorus inputs from sewage effluent. There is no evidence of any recovery in response to recent reductions in external nutrient loads.
6. Only in Esthwaite Water has the change in aquatic macrophytes been pronounced.
7. Palaeolimnological reconstruction is useful in determining background conditions and natural variation in lake ecosystems.  相似文献   

17.
The spatial (i.e. microhabitat) and temporal (i.e. seasonal) characteristics of diatom assemblages in adjacent High Arctic lakes were studied intensively June–August 2004. These baseline data are used to improve understanding of modern diatom community dynamics, as well to inform paleoenvironmental reconstructions. Diatoms were collected approximately weekly through the melt season from each principal benthic substrate (moss/macrophyte, rock scrapes, littoral sediment), plankton, and sediment traps, and were compared to the uppermost 0.5 cm of a surface core obtained from the deepest part of the lake where sediment cores are routinely collected. Water samples were collected concurrently with diatom samples to investigate species–environment relationships. The lakes share approximately half of their common taxa, the most abundant overall in both lakes being small Cyclotella species. Results of detrended correspondence analysis (DCA) indicate that the largest gradient in species turnover existed between benthic and planktonic communities in both lakes, and that sediment trap and the surface core top samples most closely resemble the planktonic assemblage, with an additional contribution from the lotic environment. Our results indicate clear micro-spatial controls on species assemblages and a degree of disconnection between the benthos and deep lake sediments that manifests as an under-representation of benthic taxa in deep lake surface sediments. These findings are particularly relevant in the context of interpreting the paleoenvironmental record and assessing ecosystem sensitivity to continued climate change.  相似文献   

18.
Benthic invertebrate communities within confluence sites, or areas of sediment deposition, are shaped by the input of catchment products including coarse woody debris, organic and inorganic particulates, and contaminants, but these sites also appear to be potential “hotspots” where recolonization of severely damaged ecosystems begins. Two species of leaf packs and a sweep netting technique were used to assess benthic invertebrate communities across a gradient of 14 confluence sites in 3 recovering lakes near the copper and nickel smelters in Sudbury, Canada. Environmental variables including delta habitat composition, delta area and length, and composition of deposited materials were used to detect spatial patterns in littoral benthic invertebrate communities. Benthic invertebrate community relationships with water chemistry were also assessed. Partial redundancy analysis (pRDA) showed that all sampling methods detected similar gradients of increasing invertebrate community richness and diversity as area and length of the sediment delta and the surface organic matter abundance increased. Two-way nested ANOVAs showed significant differences (p < .05) in taxa richness and diversity metrics among sites. Of the three methods, the benthic invertebrate community measurements from the birch leaf packs provided the strongest correlations with measures of organic matter inputs or habitat characteristics of the confluence zones. These correlations suggest that tree planting in riparian areas, or organic matter or macrophyte additions to littoral zones, may enhance littoral benthic invertebrate richness and diversity in acid and metal damaged lakes.  相似文献   

19.
The faunal composition of “interrhizon” invertebrate communities associated with submerged parts of three kinds of macrophytes, Eichhornia crassipes, Gramineae spp. and Polygonum tomentosum, were studied in an oxbow lake, Lake Tundai, with acidic water (pH 3.9–4.4) in the peat swamp area of Central Kalimantan. The pH, turbidity, and chlorophyll-a concentration in the surface waters tended to be higher in macrophyte stands than in open waters near the stands. Thirty-one taxa belonging to three groups of invertebrates, Arachnida, Insecta, especially chironomids, and Isopoda, were found from the root systems, of which insects were the most abundant in every macrophyte stand. The interrhizon invertebrates accounted for 0.16–8.7 g wet wt m?2 among three vegetational stands. The diversity and abundance of interrhizon invertebrates are low in Lake Tundai; this could be due to low pH and/or low productivity in the lake water.  相似文献   

20.
In this study, we examined how the biomass and species composition of aquatic plant communities relates to cottage development of Canadian Shield lakes. Within the North Kawartha Region of Ontario, we sampled the macrophyte communities at two water depths (0.5 m and 1.5 m) in lakes (n = 12) having a range of cottage densities (0-23 cottages km−1 of shoreline). Across all lakes, 39 species were found, with individual lake richness ranging from six to ten. Macrophyte biomass decreased with increasing cottage density, irrespective of depth (ANCOVA dev’t*depth p = 0.925). In contrast, only the shallower depth showed a relationship between cottage development and richness and diversity; highly developed lakes had three or fewer species and diversities less than 1.5. There was also a shift in structural plant type from floating leaf and emergent on undeveloped lakes to submersed and submersed low-lying on developed lakes. Ordination analysis demonstrated that cottage development (and to a lesser extent, lake area) was strongly correlated (p = 0.05) with community species composition in southern Ontario lakes. Our results thus demonstrate that the management of cottage development should minimize the loss of biomass and species richness of aquatic plants given the likely negative effects of these alterations on other taxa in littoral zones and foodwebs in lake ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号