首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A novel syrup containing neofructo-oligosaccharides was produced from sucrose (Brix 70) by whole cells of Penicillium citrinum. The efficiency of fructo-oligosaccharides production was more than 55% and those of the main carbohydrate components, 1-kestose (Fruf 21Fruf 21 Glc), nystose (Fruf 21Fruf 21 Fruf 21 Glc) and neokestose (Fruf 26 Glc12 Fruf), were 22, 14 and 11%, respectively.  相似文献   

2.
Campylobacter sputorum subspeciesbubulus contains a membrane-bound nitrite reductase which catalyses the six-electron reduction of nitrite to ammonia. Formate andL-lactate are used as hydrogen donors. Cells ofC. sputorum grown with nitrate or nitrite contain cytochromes of theb-andc-type and a carbon monoxide-binding cytochromec. In addition, a special membrane-bound carbon monoxide-binding pigment is found. Nitrite reduction with formate orL-lactate as a hydrogen donor is strongly inhibited by 2-n-heptyl-4-hydroxyquinoline-N-oxide (HQNO). Nitrite reduction by bacterial suspensions with lactate as a hydrogen donor is strongly inhibited by carbonylcyanide-m-chlorophenyl-hydrazone (CCCP) whereas nitrite reduction with formate as a hydrogen donor is not inhibited at all. H+/O values and H+/NO 2 - values were measured with ascorbate + N,N,N,N-tetramethyl-p-phenylenediamine (TMPD), formate (in the absence and presence of carbonic anhydrase) andL-lactate as a hydrogen donor. The results are summarized in a scheme for electron transport from formate or lactate to oxygen or nitrite which shows a periplasmic orientation of formate dehydrogenase and nitrite reductase and a cytoplasmic orientation of lactate dehydrogenase and oxygen reduction, and which shows proton translocation with a H+/2e value of 2.0. The H+/O and H+/NO 2 - values predicted by this scheme are in good agreement with the experimental values.Abbreviations CCCP carbonylcyanide-m-chlorophenylhydrazone - HQNO 2-n-heptyl-4-hydroxyquinoline-N-oxide - MTPP+ methyltriphenylphosphonium cation - TMPD N,N,N,N-tetramethyl-p-phenylenediamine; H+/O (H+/NO 2 - ), number of protons liberated in the outer bulk phase at the reduction of one atom O (one ion NO 2 - ); H+/2e (q+/2e), number of protons (charges) translocated across the cytoplasmic membrane during flow of two electrons to an acceptor  相似文献   

3.
The regulation of the expression of enzyme activities catalyzing initial reactions in the anoxic metabolism of various aromatic compounds was studied at the whole cell level in the denitrifying Pseudomonas strain K 172. The specific enzyme activities were determined after growth on six different aromatic substrates (phenol, 4-hydroxybenzoate, benzoate, p-cresol, phenylacetate, 4-hydroxyphenylacetate) all being proposed to be metabolized anaerobically via benzoyl-CoA. As a control cells were grown on acetate, or aerobically on benzoate. The expression of the following enzyme activities was determined.Phenol carboxylase, as studied by the isotope exchange between 14CO2 and the carboxyl group of 4-hydroxybenzoate; 4-hydroxybenzoyl-CoA reductase (dehydroxylating); p-cresol methylhydroxylase; 4-hydroxybenzyl alcohol dehydrogenase; 4-hydroxybenzaldehyde dehydrogenase; coenzymeA ligases for the aromatic acids benzoate, 4-hydroxybenzoate, phenylacetate, and 4-hydroxyphenylacetate; phenylglyoxylate: acceptor oxidoreductase and 4-hydroxyphenylglyoxylate: acceptor oxidoreductase; aromatic alcohol and aldehyde dehydrogenases.The formation of most active enzymes is strictly regulated; they were only induced when required, the basic activities being almost zero. The observed whole cell regulation pattern supports the postulate that the enzyme activities play a role in anoxic aromatic metabolism and that the compounds are degraded via the following intermediates: Phenol 4-hydroxybenzoate 4-hydroxybenzoyl-CoA benzoyl-CoA; 4-hydroxybenzoate 4-hydroxybenzoyl-CoA benzoyl-CoA; benzoate benzoyl-CoA; p-cresol 4-hydroxybenzaldehyde 4-hydroxybenzoate 4-hydroxybenzoyl-CoA benzoyl-CoA; phenylacetate phenylacetyl-CoA phenylglyoxylate benzoyl-CoA plus CO2; 4-hydroxyphenylacetate 4-hydroxyphenylacetyl-CoA 4-hydroxyphenylglyoxylate 4-hydroxybenzoyl-CoA plus CO2 benzoyl-CoA.  相似文献   

4.
Homogenized tissues and their alkali-soluble and alkali-insoluble fractions of fruiting bodies of the basidiomycetes Laetiporus sulphureus and Piptoporus betulinus were investigated using X-ray diffraction, infrared spectrometry and chemical methods. The presence of (13)--d-glucan, (13)--d-glucan and chitin was established. The relative amounts of these polysaccharides were different in the two species and differences were also found between context and trama. The proportion of (13)--d-glucan was exceptionally high in the context of L. sulphureus (about 78%). In addition, the trama of both species contained a substance resembling a cyclic wax by its X-ray pattern and solubility properties. The substances identified are considered to belong to the hyphal wall  相似文献   

5.
A bacterium isolated from soil and identified asAgrobacterium sp produced a water-soluble extracellular polysaccharide capable of producing highly viscous solutions. Gas chromatographic analysis revealed a sugar composition of glucose, galactose and mannose in the molar ratio of 7.52.41, together with 3.7% (w/w) pyruvic acid. Methylation analyses showed the presence of (13)-, (14)- and (16)-linked glucose, (13)- and (14, 16)-linked galactose and a small portion of (13)-linked mannose residues. Succinic acid was not present. The molecular weight of the polysaccharide was estimated by light scattering to be 2×106 Da. The viscosity of solutions containing the polysaccharide remained constant from pH 3 to 11, and decreased by 50% when heated from 5 to 55°C. Maximum yield of the polysaccharide, 20 g L–1, was reached in 48 h at 30°C incubation.  相似文献   

6.
Transitions in growth irradiance level from 92 to 7 Em-2 s-1 and vice versa caused changes in the pigment contents and photosynthesis of Oscillatoria agardhii. The changes in chlorophyll a and C-phycocyanin contents during the transition from high to low irradiance (HL) were reflected in photosynthetic parameters. In the LH transition light utilization efficiencies of the cells changed faster than pigment contents. This appeared to be related to the lowering of light utilization efficiencies of photosynthesis. As a possible explanation it was hypothesized that excess photosynthate production led to feed back inhibition of photosynthesis. Time-scales of changes in the maximal rate of O2 evolution were discussed as changes in the number of reaction centers of photosystem II in relation to photosynthetic electron transport. Parameters that were subject to change during irradiance transitions obeyed first order kinetics, but hysteresis occurred when comparing HL with LH transients. Interpretation of first order kinetic analysis was discussed in terms of adaptive response vs changes in growth rate.Non-standard abbreviations Chla chlorophyll a - CPC C-phycocyanin - PS II photosystem II - PS I photosystem I - RC II reaction center of photosystem II - P photosynthetic O2-evolution - I irradiance, Em-2 s-1 - light utilization efficiency of cells, mmol O2·mg dry wt-1·h-1/Em-2 s-1 - light utilization efficiency of photosynthetic apparatus, mol O2·mol Chla -1·h-1/Em-2 s-1 - Pmax maximal rate of O2 evolution by cells, mol O2·mg dry wt-1·h-1 - Pmax maximal rate of O2 evolution by photosynthetic apparatus, mol O2·mol·Chla -1·h-1 - LL low light, E m-2 s-1 - HL high light, E m-2 s-1 - LH low to high light transition - HL high to low light transition - k specific rate of adaptation, h-1 - specific growth rate, h-1 - Q pool size of cell constituent, mol·mg dry wt-1 - q net synthesis rate of cell constituent, mol·mg dry wt-1·h-1  相似文献   

7.
Fitch and Markowitz' theory of concomitantly variable codons (covarions) in evolution predicted the existence of functional correlation in amino acid residue mutations among present-day cytochromes c. Mutational analysis was carried out on yeast iso-2-cytochrome c, where hydrophobic core residues I20, M64, L85, and M98 and surface residue L9 were mutated, in selected combinations, to those found in mammalian and bird cytochromes c. The functionality assay is based upon the ability of yeast cells to grow in YPGE medium. Furthermore, experiments on the single M64L and M98L mutations as well as the double M64L/M98L mutation using NMR showed that the effects of these mutations are to perturb the structural integrity of the protein. We identified functional correlation in two cases of a pair of residue mutations, the I20 V and M98 L pair and the L9 I and L85 I pair. In both cases, only one of the two alternative, putative evolutionary pathways leads to a functional protein and the corresponding pairs of residue mutations are among those found in present-day cytochromes c. Since valine is predicted to be at position 20 in the ancestral form of cytochrome c, the present data provide an explanation for the ancient requirement of leucine rather than methionine in position 98. The present data provide further evidence for the role of those specific atom–atom interactions in directing a pathway in the evolutionary changes of the amino acid sequence that have taken place in cytochrome c, in accordance with Fitch and Markowitz.  相似文献   

8.
The seed storage globulins from sixHelianthus and four hybrids were studied using mono and bidimensional gel SDS electrophoresis (+ 2 mercaptoethanol). The polypeptide composition of each subunit was determined. Different pairs are specifically expressed according to the species studied. Three typical patterns were discriminated. All the studied species exhibit five subunits: two of them are expressed in all the species (11 and 22). The subunit corresponding to the 11 pair is present inH. petiolaris and in the three populations ofH. annuus studied. The 2b2 pair is common toH. annuus andH. argophyllus. H. petiolaris presents two specific 2a2 and 44 pairs andH. annuus a specific 33 pair. InH. argophyllus 11 33 or 44 are never observed but are replaced by 13 and 31 pairs. Some globulins, poorly represented, are of forms but present chains of higher molecular weights (in the range 54–56 kDa). Expressing variations in the banding patterns between these species by the use of a similarity index reveals complete identity between the three populations ofH. annuus. Identity between the twoH. petiolaris studied is also observed.H. annuus andH. argophyllus appear to be closer to each other thanH. petiolaris concerning the seed storage globulins.  相似文献   

9.
The lectin extracted from the seeds of Salvia sclarea (SSL) recognizes the Tn antigen (GalNAc 1Ser/Thr) expressed in certain human carcinomas. In previous studies, knowledge of the binding properties of SSL was restricted to GalNAc1 related oligosaccharides and glycopeptides. Thus, the requirements of functional groups in monosaccharide and high-density polyvalent carbohydrate structural units for SSL binding and an updated affinity profile were further evaluated by enzyme-linked lectinosorbent (ELLSA) and inhibition assays. Among the glycoproteins (gps) tested for interaction, a high density of exposed Tn-containing glycoproteins such as in the armadillo salivary Tn glycoprotein and asialo ovine salivary glycoprotein reacted best with SSL. When the gps were tested for inhibition of SSL binding, which was expressed as 50% nanogram inhibition, the high density polyvalent Tn present in macromolecules was the most potent inhibitor. Among the monosaccharide and carbohydrate structural units studied, which were expressed as nanomole inhibition, GalNAc 13GalNAc 13Gal 14Gal 14Glc (Fp), GalNAc 13Gal 14Glc (AL), GalNAc 13GalNAc 1Me (F), GalNAc 13GalNAc 1Me (F ) and GalNAc 1 Ser/Thr (Tn) were the most active ligands, being 2.5–5.0× 103 and 1.25–2.5 times more active than Gal and GalNAc, respectively. From the results, it is suggested that the combining site of SSL is a shallow groove type, recognizing the monosaccharide of GalNAc as the major binding site or Tn up to the Forssman pentasaccharide (Fp). It can be concluded that the three critical factors for SSL binding are the –NH CH3CO at carbon-2 in Gal, the configuration of carbon-3 in GalNAc, and the polyvalent Tn (GalNAc 1Ser/Thr) present in macromolecules. These results should assist in understanding the glyco-recognition factors involved in carbohydrate–lectin interactions in biological processes. The effect of the polyvalent F , F and GalNAc 13Gal 1 (P ) glycotopes on binding should be examined. However, this is hampered by the lack of availability of suitable reagents.  相似文献   

10.
Four new Proteus O-specific polysaccharides were isolated by mild acid degradation from the lipopolysaccharides of P. penneri 28 (1), P. vulgaris O44 (2), P. mirabilis G1 (O3) (3), and P. myxofaciens (4), and their structures were elucidated using NMR spectroscopy and chemical methods. They were found to contain non-carbohydrate organic acids, including ether-linked lactic acid and amide-linked amino acids, and the following structures of the repeating units were established: 3)--L-QuipNAc-(13)--D-GlcpNAc-(16)--D-GlcpNAc-(1 (S)-Lac-(2–3) (1) 4)--D-GlcpA-(13)--D-GalpNAc-(14)--D-Glcp-(13)--D-Galp-(14)--D-GalpNAc-(1 L-Ala-(2–6) (2) 3)--D-GalpNAc-(16)--D-GalpNAc-(14)--D-GlcpA-(1 L-Lys-(2–6)--D-GalpA-(14) (3) 4)--D-GlcpA-(16)--D-GalpNAc-(16)--D-GlcpNAc-(13)--D-GlcpNAc-(1 (R)-aLys-(2–6) (4) where (S)-Lac and (R)-aLys stand for (S)-1-carboxyethyl (residue of lactic acid) and N-[(R)-1-carboxyethyl]-L-lysine (alaninolysine), respectively. The data obtained in this work and earlier serve as the chemical basis for classification of the bacteria Proteus.  相似文献   

11.
The functional size of Photosystem II (PS II) was investigated by radiation inactivation. The technique provides an estimate of the functional mass required for a specific reaction and depends on irradiating samples with high energy -rays and assaying the remaining activity. The analysis is based on target theory that has been modified to take into account the temperature dependence of radiation inactivation of proteins. Using PS II enriched membranes isolated from spinach we determined the functional size of primary charge separation coupled to water oxidation and quinone reduction at the QB site: H2O (Mn)4 Yz P680 Pheophytin Q phenyl-p-benzoquinone. Radiation inactivation analysis indicates a functional mass of 88 ± 12 kDa for electron transfer from water to phenyl-p-benzoquinone. It is likely that the reaction center heterodimer polypeptides, D1 and D2, contribute approximately 70 kDa to the functional mass, in which case polypeptides adding up to approximately 20 kDa remain to be identified. Likely candidates are the and subunits of cytochrome b 559and the 4.5 kDa psbI gene product.Abbreviations Cyt cytochrome - PS Photosystem - P680 primary electron donor of Photosystem II - QA primary quinone acceptor of Photosystem II - QB secondary quinone acceptor of Photosystem II - Yz tyrosine donor to P680  相似文献   

12.
The molten globule state (MG) of cytochrome c is the major intermediate of protein folding. The formation of MG state of cytochrome c is induced by n-alkyl sulfates such as sodium octyl sulfate (SOS), sodium dodecyl sulfate (SDS), and sodium tetradecyl sulfate (STS). The folding state of cytochrome c was monitored using circular dichroism (CD), isothermal titration calorimetry (ITC) and partial specific volumes. To explore a new approach for characterizing the MG conformation, cyclic voltametric studies of n-alkyl sulfates induced transition at acidic pH of cytochrome c (unfolded state, U) was carried out. Here, we have used a cystein-modified gold electrode, which is effective for direct rapid electron transfer to cytochrome c even in acid solutions, to directly observe electrochemistry in native (N) cytochrome c. Our results show that the extent of electron transfer is increased for UMG, and also the easiness of electron transferring occurred from MGN transition. Thus we demonstrate that the MG state of cytochrome c, induced by n-alkyl sulfates as salts with hydrophobic chains (hydrophobic salts), with different compactness reaches to near identical amount of electron transferring as N state.  相似文献   

13.
The lipopolysaccharides (LPSs) extracted from the outer membrane of Azospirillum brasilense Sp245 and its Omegon-Km mutants KM018 and KM252 with a hot aqueous solution of phenol were found to differ in the content of carbohydrates, glucosamine, and total phosphorus and in the proportion of octadecenoic and hexadecanoic acids in the lipid moieties of the LPSs. The carbohydrate moieties of the LPSs were heterogeneous in charge. The analysis of the O-specific polysaccharides (O-PSs) of the mutants KM018 and KM252 by gas–liquid chromatography, IR spectroscopy, and NMR spectroscopy showed that they are composed of the same linear pentasugar repeating units 2)--D-Rhap-(1 3)--D-Rhap-(1 3)--D-Rhap-(1 2)--D-Rhap-(1 2)--D-Rhap-(1 as the O-PSs of the parent strain Sp245. The reported differences in the biological activity of the LPSs of the parent and mutant strains can be due to their different chemical composition.  相似文献   

14.
Anthocyanins isolated and characterized from the wild carrot suspension cultures used here were 3-O--D-glucopyranosyl-(16)-[-D-xylopyranosyl-(12)-]-D<-galactopyranosylcyanidin (1), 3-O-[-D- xylopyranosyl-(12)--D-galactopyranosyl]cyanidin (2), 3-O-(6-O-sinapoyl)--D-glucopyranosyl-(16)-[-D- xylopyranosyl-(12)-]-D-galactopyranos ylcyanidin (3), 3-O-(6-O-feruoyl)--D-glucopyranosyl-(16)-[- D-xylopyranosyl-(12)-]-D-galactopyranosylcyanidin (4), 3-O-(6-O-coumaroyl)--D-glucopyranosyl-(16)- [-D-xylopyranosyl-(12)-]-D-galactopyrano sylcyanidin (5), 3-O-[6-O-(3,4,5-trimethoxycinnamoyl)]-- D-glucopyranosyl-(16)-[-D-xylopyranosyl-(12)-]-D-galactopyranosylcyanidin (6), 3-O-[6-O-(3,4-dime- thoxycinnamoyl)]--D-glucopyranosyl-(16)-[-D-xylopyranosyl-(12)-]-D-galactopyranosylcyanidin (7), 3-O-[(6-O-sinapoyl)--D-glucopyranosyl-(16)--D-galactopyranosyl]cyanidin (8), and 3-O-(-D-galactopyranosyl)cyanidin (9). Except when cinnamic acids were provided in the culture medium, the major anthocyanin present in the two clones examined was 2. When the naturally occurring and some non-naturally occurring cinnamic acids were provided individually in the medium, 1 and 2 were minor components and the anthocyanin acylated with the supplied cinnamic acid, namely 3, 4, 5, 6, or 7 was the major anthocyanin present in the tissue. When caffeic acid was provided the major anthocyanin in the tissue was 4, thereby suggesting that the caffeic acid was methylated before its use in anthocyanin biosynthesis. Other cinnamic acids supplied had limited effects on the anthocyanins accumulated and appeared not to result in the accumulation of new anthocyanins by the tissue. Thus the tissue can use some but not all analogues of sinapic acid to acylate anthocyanins. Additional anthocyanins were detected in extracts of the wild carrot tissue cultures using mass spectrometry (both MS/MS and HPLC/MS). The additional compounds detected have also been found in cultures of black carrot, an Afghan cultivar of Daucus carota ssp. sativa and the flowers of wild carrot giving no evidence for qualitative differences in the anthocyanins synthesized by subspecies, cell cultures from subspecies, or clones from cell cultures. There are major differences in the amounts of individual anthocyanins found in cultures from different subspecies and in different clones from cell cultures. Here anthocyanins without acyl groups were usually found in the tissues and their accumulation is discussed. On the basis of the structures of the isolated anthocyanins, a likely pathway from cyanidin to the accumulated anthocyanins is proposed and discussed.Abbreviations Sin sinapoyl - Fer feruoyl - 4-Coum. 4-coumaroyl - 3,4-MeO2Cin 3,4-dimethoxyeinnamoyl - 3,4,5-MeO3Cin 3,4,5-trimethoxycinnamoyl - Cya cyanidin  相似文献   

15.
Rabbit antisera were raised against -(16)-galactotetraose coupled to bovine serum albumin (Gal4-BSA). The antisera reacted with arabinogalactan-proteins (AGPs) isolated from seeds, roots, or leaves of radish (Raphanus sativus L.) as revealed by immunodiffusion analysis. Extensive removal of -l-arabinofuranosyl residues from these AGPs enhanced the formation of precipitin with the antisera. The antisera did not react with such other polysaccharides as soybean arabinan-4-galactan, -(14)-galactan, and -(13)-galactan, indicating their high specificity toward the consecutive -(16)-galactosyl side chains of AGPs. The antibodies were purified by affinity chromatography on a column of immobilized -(16)-galactotetraose as ligand. The specificity of the antibodies toward consecutive (16)-linked -galactosyl residues was confirmed by enzyme-linked immunosorbent assay for hapten inhibition against Gal4-BSA as antigen, which revealed that -(16)-galactotriose and-tetraose were potent inhibitors, while -(13)-or -(14)-galactobioses and -trioses were essentially unreactive. Electron-microscopic observation of immunogold-stained tissues demonstrated that AGPs were localized in the middle lamella as well as at the plasma membrane of primary roots of radish. Agglutination of protoplasts prepared from cotyledons occurred with the antibodies, supporting the evidence for localization of AGPs in the plasma membrane. The antibody-mediated agglutination was inhibited by addition of AGPs or -(16)-galactotetraose.Abbreviations AGP arabinogalactan-protein - BSA bovine serum albumin - ELISA enzyme-linked immunosorbent assay - FITC fluorescein isothiocyanate - Gal3-BSA -(16)-galactotriose coupled to BSA - Gal4-BSA -(16)-galactotetraose coupled to BSA - Ig immunoglobulin - 4-Me-GlcpA 4-O-methyl-d-glucopyranosyluronic acid - Mr relative molecular mass The authors wish to thank Dr. J. Ohnishi of Department of Biochemistry, Saitama University, for his help in preparing protoplasts.  相似文献   

16.
The magnitude of the proton motive force (p) and its constituents, the electrical () and chemical potential (-ZpH), were established for chemostat cultures of a protease-producing, relaxed (rel ) variant and a not protease-producing, stringent (rel +) variant of an industrial strain ofBacillus licheniformis (respectively referred to as the A- and the B-type). For both types, an inverse relation of p with the specific growth rate was found. The calculated intracellular pH (pHin) was not constant but inversely related to . This change in pHin might be related to regulatory functions of metabolism but a regulatory role for pHin itself could not be envisaged. Measurement of the adenylate energy charge (EC) showed a direct relation with for glucose-limited chemostat cultures; in nitrogen-limited chemostat cultures, the EC showed an approximately constant value at low and an increased value at higher . For both limitations, the ATP/ADP ratio was directly related to .The phosphorylation potential (G'p) was invariant with . From the values for G'p and p, a variable H+/ATP-stoichiometry was inferred: H+/ATP=1.83+0.52µ, so that at a given H+/O-ratio of four (4), the apparent P/O-ratio (inferred from regression analysis) showed a decline of 2.16 to 1.87 for =0 to max (we discuss how more than half of this decline will be independent of any change in internal cell-volume). We propose that the constancy of G'p and the decrease in the efficiency of energy-conservation (P/O-value) with increasing are a way in which the cells try to cope with an apparent less than perfect coordination between anabolism and catabolism to keep up the highest possible with a minimum loss of growth-efficiency. Protease production in nitrogen-limited cultures as compared to glucose-limited cultures, and the difference between the A- and B-type, could not be explained by a different energy-status of the cells.Abbreviations CCCP carbonylcyanide-p-trichloromethoxyphenylhydrazone - DW dry weight of biomass - F Faraday's constant, 96.6 J/(mV × mol) - Fo chemostat outflow-rate (ml/h) - FCCP carbonylcyanide-p-trifluoromethoxyphenylhydrazone - G'p phosphorylation potential, the Gibbs energy change for ATP-synthesis from ADP and Pi - G'0p standard Gibbs energy change at specified conditions - H+/ATP number of protons translocated through - ATP synthase in synthesis of one ATP - H+/O protons translocated during transfer of 2 electrons from substrate to oxygen - specific growth rate (1/h) - H+ transmembrane electrochemical proton potential, J/mol - Mb molar weight (147.6 g/mol) of bacteria with general cell formula C6.0H10.8O3.0N1.2 - pHout,in extracellular, intracellular pH - Pi (intracellular) inorganic phosphate - p proton motive force, mV - pH transmembrane pH-difference - transmembrane electrical potential, mV - P/O number of ADP phosphorylated to ATP upon reduction of one O2– to H2O by two electrons transferred through the electron transfer chain - P/O (H+/O) × (H+/ATP)–1 - P/OF, P/ON P/O with the two electrons donated by resp. (NADH + H+) and FADH - q specific rate of consumption or production (mol/g DW × h) - rel +,rel stringent, relaxed genotype - R universal gas constant, 8.36 J/(mol × degree) - T absolute temperature - TPMP+ triphenylmethylphosphonium ion - TPP+ tetraphenyl phosphonium ion - Y growth yield, g DW/mol - Z conversion constant=61.8 mV for 310 K (37 °C) - ZpH transmembrane proton potential or chemical potential, mV  相似文献   

17.
A newly isolated strain, MU-2, which produces very high -fructofuranosidase activity, was identified asAspergillus japonicus. For enzyme production by the strain, sucrose at 20% (w/v) was the best carbon source and yeast extract at 1.5 to 3% (w/v) the best nitrogen source. Total enzymatic activity and cell growth were at maximum after 48 h, at 1.57×104 U/flask and 0.81 g dry cells/flask, respectively. The optimum pH value of the enzymatic reaction was between 5.0 and 5.5 and the optimum temperature 60 to 65°C. The enzyme produced 1-kestose (O--d-fructofuranosyl-(21)--d-fructofuranosyl -d-glucopyranoside) and nystose (O--d-fructofuranosyl-(21)--d-fructofuranosyl-(21)--d-fructofuranosyl -d-glucopyranoside) from sucrose by fructosyl-transferring activity. The strain was found to be very useful for industrial production of -fructofuranosidase.  相似文献   

18.
Summary On t.l.c. plates 125I-cholera toxin binds to a disialoganglioside tentatively identified as GDlb with about 10 times less capacity than to ganglioside GM1. Binding of labeled toxin to both gangliosides was abolished in presence of excess amounts of unlabeled B subunit. Ganglioside extracts from human or pig intestinal mucosa showed toxin binding to gangliosides GM1 and GD1b. In ganglioside-containing lipid monolayers the penetration of the toxin was independent of the ganglioside binding capacity.Abbreviations GM2 Gal-NAc14Gal(3-2NeuAc)14G1c1Cer - GM1 Gal3Ga1-NAc14Gal(32NeuAc)14G1c11Cer - GD1a NeuAc23Ga113Gal-NAc14Gal(32NeuAc)14G1c11Cer - GD1b Gall3Gal-NAcl4Gal(32NeuAc82NeuAc)14Glc11Cer - GT1b NeuAc23Ga113Ga1-NAcal4Gal(3-2NeuAc82NeuAc)14G1c11Cer - dpPC 1,2-hexadecanoyl-sn-glycero-3-phosphocholine - dpPE 1,2-hexadecanoyl-sn-glycero-3-phosphoethanolamine  相似文献   

19.
Barley seedlings (Hordeum vulgare L. Boone) were grown at 20°C with 16 h/8 h light/dark cycle of either high (H) intensity (500 mole m-2 s-1) or low (L) intensity (55 mole m-2 s-1) white light. Plants were transferred from high to low (H L) and low to high (L H) light intensity at various times from 4 to 8 d after leaf emergence from the soil. Primary leaves were harvested at the beginning of the photoperiod. Thylakoid membranes were isolated from 3 cm apical segments and assayed for photosynthetic electron transport, Photosystem II (PS II) atrazine-binding sites (QB), cytochrome f(Cytf) and the P-700 reaction center of Photosystem I (PS I). Whole chain, PS I and PS II electron transport activities were higher in H than in L controls. QB and Cytf were elevated in H plants compared with L plants. The acclimation of H L plants to low light occurred slowly over a period of 7 days and resulted in decreased whole chain and PS II electron transport with variable effects on PS I activity. The decrease in electron transport of H L plants was associated with a decrease in both QB and Cytf. In L H plants, acclimation to high light occurred slowly over a period of 7 days with increased whole chain, PS I and PS II activities. The increase in L H electron transport was associated with increased levels of QB and Cytf. In contrast to the light intensity effects on QB levels, the P-700 content was similar in both control and transferred plants. Therefore, PS II/PS I ratios were dependent on light environment.Abbreviations Asc ascorbate - BQ 2,5-dimethyl-p-benzoquinone - DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - DCIP 2,6-dichlorophenolindophenol - H control plants grown under high light intensity - H L plants transferred from high to low light intensity - L low control plants grown under low light intensity - L H plants transferred from low to high light intensity - MV methyl viologen - P-700 photoreaction center of Photosystem I - QB atrazine binding site - TMPD N,N,N,N-tetramethyl-p-phenylenediamine Cooperative investigations of the United States Department of Agriculture, Agricultural Research Service, and the North Carolina Agricultural Research Service, Raleigh, NC. Paper No. 11990 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh, NC 27695-7643, USA.  相似文献   

20.
Geshi N  Jørgensen B  Ulvskov P 《Planta》2004,218(5):862-868
The subcellular localization and topology of rhamnogalacturonan I (RG-I) (14)galactosyltransferase(s) ([14]GalTs) from potato (Solanum tuberosum L.) were investigated. Using two-step discontinuous sucrose step gradients, galactosyltransferase (GalT) activity that synthesized 70%-methanol-insoluble products from UDP-[14C]Gal was detected in both the 0.5 M sucrose fraction and the 0.25/1.1 M sucrose interface. The former fraction contained mainly soluble proteins and the latter was enriched in Golgi vesicles that contained most of the UDPase activity, a Golgi marker. By gel-filtration analysis, products of 180–2,000 Da were found in the soluble fraction, whereas in the Golgi-enriched fraction the products were larger than 80 kDa and could be digested with rhamnogalacturonan lyase and (1,4)endogalactanase to yield smaller rhamnogalacturonan oligomers, galactobiose and galactose. The endogalactanase requires (14)galactans with at least three galactosyl residues for cleavage, indicating that the enzyme(s) present in the 0.25/1.1 M Suc interface transferred one or more galactosyl residues to pre-existing (14)galactans producing RG-I side chains in total longer than a trimer. Thus, the (14)GalT activity that elongates (14)-linked galactan on RG-I was located in the Golgi apparatus. This (14)GalT activity was not reduced after treatment of the Golgi vesicles with proteinase, but approximately 75% of the activity was lost after treatment with proteinase in the presence of Triton X-100. In addition, the (14)GalT activity was recovered in the detergent phase after treatment of Golgi vesicles with Triton X-114. Taken together, these observations supported the view that the RG-I (14)GalT that elongates (14)galactan was mainly located in the Golgi apparatus and integrated into the membrane with its catalytic site facing the lumen.Abbreviations GalT Galactosyltransferase - (14)GalT (14)-Galactosyltransferase - H + -ATPase Proton ATPase - HG Homogalacturonan - HSP70 ER resident Bip - mMDH Mitochondrial malate dehydrogenase - RG-I Rhamnogalacturonan I - RG-II Rhamnogalacturonan II - RGP Reversibly glycosylated polypeptide - RG-Lyase Rhamnogalacturonan lyase - Suc Sucrose - UDPase Uridine-5-diphosphatase  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号