首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The enveloped dsRNA bacteriophages phi6 and phi8 are the two most distantly related members of the Cystoviridae family. Their structure and function are similar to that of the Reoviridae but their assembly can be conveniently studied in vitro. Electron cryomicroscopy and three-dimensional icosahedral reconstruction were used to determine the structures of the phi6 virion (14 A resolution), phi8 virion (18 A resolution), and phi8 core (8.5 A resolution). Spikes protrude 2 nm from the membrane bilayer in phi6 and 7 nm in phi8. In the phi6 nucleocapsid, 600 copies of P8 and 72 copies of P4 interact with the membrane, whereas in phi8 it is only P4 and 60 copies of a minor protein. The major polymerase complex protein P1 forms a dodecahedral shell from 60 asymmetric dimers in both viruses, but the alpha-helical fold has apparently diverged. These structural differences reflect the different host ranges and entry and assembly mechanisms of the two viruses.  相似文献   

2.
Benevides JM  Juuti JT  Tuma R  Bamford DH  Thomas GJ 《Biochemistry》2002,41(40):11946-11953
The icosahedral core of a double-stranded (ds) RNA virus hosts RNA-dependent polymerase activity and provides the molecular machinery for RNA packaging. The stringent requirements of dsRNA metabolism may explain the similarities observed in core architecture among a broad spectrum of dsRNA viruses, from the mammalian rotaviruses to the Pseudomonas bacteriophage phi6. Although the structure of the assembled core has been described in atomic detail for Reoviridae (blue tongue virus and reovirus), the molecular mechanism of assembly has not been characterized in terms of conformational changes and key interactions of protein constituents. In the present study, we address such questions through the application of Raman spectroscopy to an in vitro core assembly system--the procapsid of phi6. The phi6 procapsid, which comprises multiple copies of viral proteins P1 (copy number 120), P2 (12), P4 (72), and P7 (60), represents a precursor of the core that is devoid of RNA. Raman signatures of the procapsid, its purified recombinant core protein components, and purified sub-assemblies lacking either one or two of the protein components have been obtained and interpreted. The major procapsid protein (P1), which forms the skeletal frame of the core, is an elongated and monomeric molecule of high alpha-helical content. The fold of the core RNA polymerase (P2) is also mostly alpha-helical. On the other hand, the folds of both the procapsid accessory protein (P7) and RNA-packaging ATPase (P4) are of the alpha/beta type. Raman difference spectra show that conformational changes occur upon interaction of P1 with either P4 or P7 in the procapsid. These changes involve substantial ordering of the polypeptide backbone. Conversely, conformations of procapsid subunits are not significantly affected by interactions with P2. An assembly model is proposed in which P1 induces alpha-helix in P4 during formation of the nucleation complex. Subsequently, the partially disordered P7 subunit is folded within the context of the procapsid shell.  相似文献   

3.
4.
5.
6.
Bacteriophage phi6 is an enveloped dsRNA virus with a segmented genome. Phi6 specifically packages one copy of each of its three genome segments into a preassembled polymerase complex. This leads to expansion of the polymerase complex, minus and plus strand RNA synthesis, and assembly of the nucleocapsid. The phi6 in vitro assembly and packaging system is a valuable model for dsRNA virus replication. The structure of the nucleocapsid at 7.5 A resolution presented here reveals the secondary structure of the two major capsid proteins. Asymmetric P1 dimers organize as an inner T = 1 shell, and P8 trimers organize as an outer T = 13 laevo shell. The organization of the P1 molecules in the unexpanded and expanded polymerase complex suggests that the expansion is accomplished by rigid body movements of the P1 monomers. This leads to exposure of new potential RNA binding surfaces to control the sequential packaging of the genome segments.  相似文献   

7.
The double-stranded RNA bacteriophage phi6 contains a nucleocapsid enclosed by a lipid envelope. The nucleocapsid has an outer layer of protein P8 and a core consisting of the four proteins P1, P2, P4 and P7. These four proteins form the polyhedral structure which acts as the RNA packaging and polymerase complex. Simultaneous expression of these four proteins in Escherichia coli gives rise to procapsids that can carry out the entire RNA replication cycle. Icosahedral image reconstruction from cryo-electron micrographs was used to determine the three-dimensional structures of the virion-isolated nucleocapsid and core, and of several procapsid-related particles expressed and assembled in E. coli. The nucleocapsid has a T = 13 surface lattice, composed primarily of P8. The core is a rounded structure with turrets projecting from the 5-fold vertices, while the procapsid is smaller than the core and more dodecahedral. The differences between the core and the procapsid suggest that maturation involves extensive structural rearrangements producing expansion. These rearrangements are co-ordinated with the packaging and RNA polymerization reactions that result in virus assembly. This structural characterization of the phi6 assembly intermediates reveals the ordered progression of obligate stages leading to virion assembly along with striking similarities to the corresponding Reoviridae structures.  相似文献   

8.
The double-stranded RNA bacteriophage ϕ6 is an extensively studied prokaryotic model system for virus assembly. There are established in vitro assembly protocols available for the ϕ6 system for obtaining infectious particles from purified protein and RNA constituents. The polymerase complex is a multifunctional nanomachine that replicates, transcribes, and translocates viral RNA molecules in a highly specific manner. The complex is composed of (i) the major structural protein (P1), forming a T=1 icosahedral lattice with two protein subunits in the icosahedral asymmetric unit; (ii) the RNA-dependent RNA polymerase (P2); (iii) the hexameric packaging nucleoside triphosphatase (NTPase) (P4); and (iv) the assembly cofactor (P7). In this study, we analyzed several ϕ6 virions and recombinant polymerase complexes to investigate the relative copy numbers of P2, P4, and P7, and we applied saturated concentrations of these proteins in the self-assembly system to probe their maximal numbers of binding sites in the P1 shell. Biochemical quantitation confirmed that the composition of the recombinant particles was similar to that of the virion cores. By including a high concentration of P2 or P7 in the self-assembly reaction mix, we observed that the numbers of these proteins in the resulting particles could be increased beyond those observed in the virion. Our results also suggest a previously unidentified P2-P7 dependency in the assembly reaction. Furthermore, it appeared that P4 must initially be incorporated at each, or a majority, of the 5-fold symmetry positions of the P1 shell for particle assembly. Although required for nucleation, excess P4 resulted in slower assembly kinetics.  相似文献   

9.
10.
11.
We present the assembly of the polymerase complex (procapsid) of a dsRNA virus from purified recombinant proteins. This molecular machine packages and replicates viral ssRNA genomic precursors in vitro. After addition of an external protein shell, these in vitro self-assembled viral core particles can penetrate the host plasma membrane and initiate a productive infection. Thus, a viral procapsid has been assembled and rendered infectious using purified components. Using this system, we have studied the mechanism of assembly of the common dsRNA virus shell and the incorporation of a symmetry mismatch within an icosahedral capsid. Our work demonstrates that this molecular machine, self-assembled under defined conditions in vitro, can function in its natural environment, the cell cytoplasm.  相似文献   

12.
13.
14.
15.
Mancini EJ  Kainov DE  Grimes JM  Tuma R  Bamford DH  Stuart DI 《Cell》2004,118(6):743-755
Many viruses package their genome into preformed capsids using packaging motors powered by the hydrolysis of ATP. The hexameric ATPase P4 of dsRNA bacteriophage phi12, located at the vertices of the icosahedral capsid, is such a packaging motor. We have captured crystallographic structures of P4 for all the key points along the catalytic pathway, including apo, substrate analog bound, and product bound. Substrate and product binding have been observed as both binary complexes and ternary complexes with divalent cations. These structures reveal large movements of the putative RNA binding loop, which are coupled with nucleotide binding and hydrolysis, indicating how ATP hydrolysis drives RNA translocation through cooperative conformational changes. Two distinct conformations of bound nucleotide triphosphate suggest how hydrolysis is activated by RNA binding. This provides a model for chemomechanical coupling for a prototype of the large family of hexameric helicases and oligonucleotide translocating enzymes.  相似文献   

16.
17.
18.
Amino acid sequence stretches similar to the four most conserved segments of positive strand RNA viral RNA-dependent RNA polymerases have been identified in proteins of four dsRNA viruses belonging to three families, i.e. P2 protein of bacteriophage phi 6 (Cystoviridae), RNA 2 product of infectious bursa disease virus (Birnaviridae), lambda 3 protein of reovirus, and VP1 of bluetongue virus (Reoviridae). High statistical significance of the observed similarity was demonstrated, allowing identification of these proteins as likely candidates for RNA-dependent RNA polymerases. Based on these observations, and on the previously reported sequence similarity between the RNA polymerases of a yeast dsRNA virus and those of positive strand RNA viruses, a possible evolutionary relationship between the two virus classes is discussed.  相似文献   

19.
The innermost VP2 core shell of the triple-layered, icosahedral rotavirus particle surrounds the viral genome and RNA processing enzymes, including the RNA-dependent RNA polymerase (VP1). In addition to anchoring VP1 within the core, VP2 is also an essential cofactor that triggers the polymerase to initiate double-stranded RNA (dsRNA) synthesis using packaged plus-strand RNA templates. The VP2 requirement effectively couples packaging with genome replication and ensures that VP1 makes dsRNA only within an assembling previrion particle. However, the mechanism by which the rotavirus core shell protein activates the viral polymerase remains very poorly understood. In the current study, we sought to elucidate VP2 regions critical for VP1-mediated in vitro dsRNA synthesis. By comparing the functions of proteins from several different rotaviruses, we found that polymerase activation by the core shell protein is specific. Through truncation and chimera mutagenesis, we demonstrate that the VP2 amino terminus, which forms a decameric, internal hub underneath each 5-fold axis, plays an important but nonspecific role in VP1 activation. Our results indicate that the VP2 residues correlating with polymerase activation specificity are located on the inner face of the core shell, distinct from the amino terminus. Based on these findings, we predict that several regions of VP2 engage the polymerase during the concerted processes of rotavirus core assembly and genome replication.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号