首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Statistical analysis of protein folding rates has been done for 84 proteins with available experimental data. A surprising result is that the proteins with multi-state kinetics from the size range of 50–100 amino acid residues (a.a.) fold as fast as proteins with two-state kinetics from the same size range. At the same time, the proteins with two-state kinetics from the size range 101–151 a.a. fold faster than those from the size range 50–100 a.a. Moreover, it turns out unexpectedly that usually in the group of structural homologs from the size range 50–100 a.a., proteins with multi-state kinetics fold faster than those with two-state kinetics. The protein folding for six proteins with a ferredoxin-like fold and with a similar size has been modeled using Monte Carlo simulations and dynamic programming. Good correlation between experimental folding rates, some structural parameters, and the number of Monte Carlo steps has been obtained. It is shown that a protein with multi-state kinetics actually folds three times faster than its structural homologs.  相似文献   

2.
The folding reactions of some small proteins show clear evidence of a hierarchic process, whereas others, lacking detectable intermediates, do not. Nevertheless, we argue that both classes fold hierarchically and that folding begins locally. If this is the case, then the secondary structure of a protein is determined largely by local sequence information. Experimental data and theoretical considerations support this argument. Part I of this article reviews the relationship between secondary structures in proteins and their counterparts in peptides.  相似文献   

3.
4.
For the third time, techniques for the prediction of three-dimensional structures of proteins were critically assessed in a worldwide blind test. Steady progress is undeniable. How did this happen and what are the implications?  相似文献   

5.
6.
Cofactors are essential components of many proteins for biological activity. Characterization of several cofactor-binding proteins has shown that cofactors often have the ability to interact specifically with the unfolded polypeptides. This suggests that cofactor-coordination prior to polypeptide folding may be a relevant path in vivo. By binding before folding, the cofactor may affect both the mechanism and speed of folding. Here, we discuss three different cofactors that modulate protein-folding processes in vitro.  相似文献   

7.
8.
Eddy SR 《Nature biotechnology》2004,22(11):1457-1458
Programs such as MFOLD and ViennaRNA are widely used to predict RNA secondary structures. How do these algorithms work? Why can't they predict RNA pseudoknots? How accurate are they, and will they get better?  相似文献   

9.
10.
11.
12.
In this contribution we shall try to argue that no folding scenario - be it hierachical, nonhierarchical, nucleation, etc. - needs to be invoked to solve Levinthal's paradox: It fails on its own grounds.  相似文献   

13.
14.
An important question that is addressed here is whether the modeling of protein folding can catch the difference between the folding of proteins with similar structures but with different folding mechanisms. In this work, the modeling of folding of four α-helical proteins from the homeodomain family, which are similar in size, was done using the Monte Carlo and dynamic programming methods. A frequently observed order of folding of α-helices for each protein was determined using the Monte Carlo method. A correlation between the experimental folding rate and the number of Monte Carlo steps was also demonstrated. Amino acid residues that are important for the folding were determined using the dynamic programming method. The defined regions correlate with the order of folding of secondary-structure elements in the proteins both in experiments and in modeling.  相似文献   

15.
16.
17.
A thermodynamically and kinetically simple picture of protein folding envisages only two states, native (N) and unfolded (U), separated by a single activation free energy barrier, and interconverting by cooperative two‐state transitions. The folding/unfolding transitions of many proteins occur, however, in multiple discrete steps associated with the formation of intermediates, which is indicative of reduced cooperativity. Furthermore, much advancement in experimental and computational approaches has demonstrated entirely non‐cooperative (gradual) transitions via a continuum of states and a multitude of small energetic barriers between the N and U states of some proteins. These findings have been instrumental towards providing a structural rationale for cooperative versus noncooperative transitions, based on the coupling between interaction networks in proteins. The cooperativity inherent in a folding/unfolding reaction appears to be context dependent, and can be tuned via experimental conditions which change the stabilities of N and U. The evolution of cooperativity in protein folding transitions is linked closely to the evolution of function as well as the aggregation propensity of the protein. A large activation energy barrier in a fully cooperative transition can provide the kinetic control required to prevent the accumulation of partially unfolded forms, which may promote aggregation. Nevertheless, increasing evidence for barrier‐less “downhill” folding, as well as for continuous “uphill” unfolding transitions, indicate that gradual non‐cooperative processes may be ubiquitous features on the free energy landscape of protein folding.  相似文献   

18.
Hallmarks of proteins containing β-helices are their increased stability and rigidity and their aggregation prone folding pathways. While parallel β-helices fold independently, the folding and assembly of many triple β-helices depends on a registration signal in order to adopt the correct three-dimensional structure. In some cases this is a mere trimerization domain, in others specialized chaperones are required. Recently, the crystal structures of two classes of intramolecular chaperones of β-helical proteins have been determined. Both mediate the assembly of large tailspike proteins and release themselves after maturation; however, they differ substantially in their structure and autoproteolytic release mechanisms.  相似文献   

19.
Although intermediates have long been recognised as fascinating species that form during the folding of large proteins, the role that intermediates play in the folding of small, single-domain proteins has been widely debated. Recent discoveries using new, sensitive methods of detection and studies combining simulation and experiment have now converged on a common vision for folding, involving intermediates as ubiquitous stepping stones en route to the native state. The results suggest that the folding energy landscapes of even the smallest proteins possess significant ruggedness in which intermediates stabilized by both native and non-native interactions are common features.  相似文献   

20.
The relationship between iron uptake by aporubredoxins (apoRds) and formation of native holorubredoxins (holoRd), including their Fe(SCys)(4) sites, was studied. In the absence of denaturants, apoRds exhibited spectroscopic features consistent with structures very similar to those of the folded holoRds. However, additions of either ferric or ferrous salts to the apoRds in the absence of denaturants gave less than 40% recovery of the native holoRd circular dichroism and UV-vis spectroscopic features. In the presence of either 6 M urea or 6 M guanidine hydrochloride, the nativelike structural features of the apoRds were absent. Nevertheless, nearly quantitative recoveries of the native holoRd spectroscopic features were achieved by addition of either ferric or ferrous salts to the denatured apoRds without diluting the denaturant. Consistent with this observation, the native spectroscopic features were unaffected by addition of the same denaturant concentrations to the as-isolated holoRds. Denaturing concentrations of urea or guanidine hydrochloride also increased the rates of holoRd recoveries from apoRds and ferrous salts. Mass spectrometry confirmed that ferric iron binding to the denatured apoRds precedes the recoveries of protein secondary structures and Fe(SCys)(4) sites. Thus, iron binding to the apoRds guides, both kinetically and thermodynamically, refolding to the native holoRd structures. Our results imply that the ferrous oxidation state would more efficiently drive formation of the native holoRd structure from the nascent apoprotein in vivo, but that the Fe(SCys)(4) site must attain the ferric state in order to achieve its native structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号