首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The effects of calcium ions and of the calcium channel blockers verapamil, diltiazem and nifedipine on galvanotaxis in Chlamydomonas have been investigated using a fully automated and computerized population system. Galvanotaxis is a function of the voltage applied to the cell population. However, the galvanotactic orientation also depends on the external calcium concentration. In a calcium-deprived nutrient medium which still contains 6 × 10?7M calcium, galvanotactic orientation is about 20% of orientation at optimal calcium concentration of 10?4 M at 9 V. The higher the external calcium concentration is, the lower is the voltage necessary for optimal galvanotactic orientation. The calcium channel blockers diltiazem and nifedipine likewise inhibit galvanotaxis of Chlamydomonas very specifically without impairing motility. Verapamil is effective, but also inhibits motility by causing detachment or shortening of the flagella. Nevertheless, inhibition of galvanotaxis by verapamil is not the only result of decreased motility, because the galvanotactic orientation is impaired to a greater extent than motility. The effectiveness of the three blockers tested in inhibiting galvanotaxis depends on the concentration and on the voltage applied. At 10?5 M, verapamil causes maximal inhibition of galvanotaxis at 9 V. At increasing concentrations up to 10?4 M, diltiazem inhibits galvanotaxis more strongly than the other blockers. If the voltage is varied at a constant blocker concentration of 2 × 10?5 M, nifedipine causes maximal inhibition at 3 V–6 V, diltiazem at 9 V and verapamil above 12 V.  相似文献   

2.
1. We have previously reported that atrial natriuretic factor (ANF) decreases neuronal norepinephrine (NE) release. The mechanism that mediates NE release from presynaptic membrane to synaptic cleft is a strongly calcium-dependent process. The modulator effect of ANF may be related to modifications in calcium influx at the presynaptic nerve ending by interaction with voltage-operated calcium channels (VOCCs).2. On this basis we investigated the effects of ANF on K+-induced 45Ca2+ uptake and evoked neuronal NE release in the presence of specific L-, N-, and P/Q-type calcium channel blockers in the rat hypothalamus.3. Results showed that ANF inhibited K+-induced 45Ca2+ uptake in a concentration-dependent fashion. Concentration–response curves to VOCC blockers nifedipine (NFD, L-type channel blocker), -conotoxin GVIA (CTX, N-type channel blocker), and -agatoxin IVA (AGA, P/Q-type channel blocker) showed that all the blockers decreased NE release. Incubation of ANF plus NFD showed an additive effect as compared to NFD or ANF alone. However, when the hypothalamic tissue was incubated in the presence of ANF plus CTX or AGA there were no differences in neuronal NE release as compared to calcium channel blockers or ANF alone.4. These results suggest that ANF decreases NE release by an L-type calcium channel independent mechanism by inhibiting N- and/or P/Q-type calcium channels at the neuronal presynaptic level. Thus, ANF modulates neuronal NE release through different mechanisms involving presynaptic calcium channel inhibition.  相似文献   

3.
Calcium currents through the somatic membrane of cultivated (a low-density culture) hippocampal neurons of rats were studied with the use of a patch-clamp technique in the whole-cell configuration. Low- and high-threshold components of calcium currents were found in the somata of all studied cells. Low-threshold currents were activated at a membrane potential of about−75 mV and reached the maximum amplitude at −45±4 mV, while the maximum amplitude of high-threshold currents was observed at 17±6 mV. Low-threshold calcium currents differed from high-threshold current in weak suppression by low Cd2+ concentration (10–20 μM), while Ni2+ inhibited both types of calcium currents to an equal extent. Experiments with organic channel blockers showed that in most neurons at least four channel types were expressed: these were L, N, P, and channels insensitive to the used blockers (presumably, R-type). A blocker of L-type calcium channels, nifedipine (10 μM), blocked, on the average, 22.7±5.2%; a blocker of N-type channels, ω-CTx-GVIA (1.0 μM), blocked 30.0±5.0% and a blocker of P/Q channels, ω-Aga-IVA (200 nM), blocked 37.2±13.3% of the integral high-threshold current. A resistive component equalled 15.7±5.1% of the latter current. It is concluded that hippocampal neurons cultivated with a low density express a pharmacologically heterogeneous population of calcium channels, and the relative proportions of different type channels are close to the earlier described channel type composition in rat hippocampal slices. Our study shows that the low-density culture can be used as an adequate model for studying calcium channels in the somatic membrane of hippocampal neurons.  相似文献   

4.
Leaf-sheath pulvini of excised segments from oat (Avena sativa L.) were induced to grow by treatment with 10 M indole-3-acetic acid (IAA), gravistimulation, or both, and the effects of calcium, EGTA, and calcium channel blockers on growth were evaluated. Unilaterally applied calcium (10 mM CaCl2) significantly inhibited IAA-induced growth in upright pulvini but had no effect on growth induced by either gravity or gravity plus IAA. Calcium alone had no effect on upright pulvini. The calcium chelator EGTA alone (10 mM) stimulated growth in upright pulvini. However, EGTA had no effect on either IAA-or gravity-induced growth but slightly diminished growth in IAA-treated gravistimulated pulvini. The calcium channel blockers lanthanum chloride (25 mM), verapamil (2.5 mM), and nifedipine (2.5 mM) greatly inhibited growth as induced by IAA (50% inhibition) or IAA plus gravity (20% inhibition) but had no effect on gravistimulated pulvini. Combinations of channel blockers were similar in effect on IAA action as individual blockers. Since neither calcium ions nor EGTA significantly affected the graviresponse of pulvini, we conclude that apoplastic calcium is unimportant in leaf-sheath pulvinus gravitropism. The observation that calcium ions and calcium channel blockers inhibit IAA-induced growth, but have no effect on gravistimulated pulvini, further supports previous observations that gravistimulation alters the responsiveness of pulvini to IAA.  相似文献   

5.
The effects of the four calcium channel blockers flunarizine, verapamil, diltiazem and nimodipine on motility and phototaxis of Chlamydomonas reinhardtio have been tested with a fully automated and computerized population system. Flunarizine inhibits motility transiently by causing the detachement of the flagella which, however, are regenerated during some hours. Phototaxis is inhibited to the same extent, but this is simply the result of the decreased motility and, hence, a non-specific effect. Verapamil causes also a detachement of the flagella with following regeneration, but in addition motility and phototaxis are inhibited by this drug to different extents, indicating the involvement of calcium channels in both processes. Diltiazem and nimodipine inhibit phototaxis without impairing motility, indicating that both processes are regulated in different ways. If diltiazem and nimodipine are applied simultaneously, no additive inhibitory effect can be observed. However, the combination of both blockers with verapamil causes and additive inhibitory effect as if verapamil is applied alone. By increasing the external calcium concentration from 10-4 M to 10-3 M the optimum of positive phototaxis is shifted to higher fluence rates. This shifting occurs also in the presence of channel blockers, but the strength of the positive reaction is influenced. These results point to the involvement of calcium channels in both phototaxis and motility, but simultaneously demonstrate the different sensitivity of the two processes to these drugs.Abbreviations DIL diltiazem (=benzothiazepine) - FLU flunarizine (=(E)-1-(bis-(4-fluorophenyl(methyl)-4-(3-phenyl-2-propenyl)piperazinex2HCl) - NIM nimodipine (=1,4-dihydropyridine) - VER verapamil (=diphenylalkylamine) CaM, calmodulin - PDE phosphodiesterase - DMSO dimethylsulfoxide  相似文献   

6.
The effects of the Ca2+/H+ exchanger A23187 and the K+/H+ exchanger nigericin, the electrogenic membrane-potential depleters valinomycin and CCCP, and the calcium channel blockers ruthenium red, nifedipine, and nitrendipine on the apical growth of Phycomyces blakesleeanus were analyzed. While all of the compounds inhibited the growth of germlings in liquid medium, the Ca2+ channel blockers were the least effective. Chitin synthesis in vivo was also sensitive to the inhibitors; here again, the calcium channel blockers were less efficient, and their effect occurred after a lag phase, in contrast to the electroneutral ionophores whose effects were immediate. The ionophores rapidly inhibited protein secretion, and reduced the number of secretory vesicles and chitosomes in the hyphal apex of P. blakesleeanus. The results suggest that not only tip-to-base calcium gradients but also transmembrane ionic gradients and membrane potential have a role in the apical growth of P. blakesleeanus. They are probably involved in the formation, migration, and/or fusion with the plasmalemma of secretory vesicles and chitosomes.  相似文献   

7.
Vicia faba plants were grown under drought conditions and variously supplemented with calcium. Drought stress markedly inhibited the growth of Vicia faba plants. Ca2+ ameliorated to a large extent this inhibition; fresh weight, dry mass, chlorophyll and water contents were variably improved. Membranes were, also, negatively affected by drought stress and percentage leakage was elevated. Concomitantly, the efflux of K+ and Ca2+ was enhanced by drought but lowered by supplemental Ca2+. In addition, membranes of droughted plants were sensitive to the Ca2+ channel blockers lanthanum, nifedipine or verapamil more than those of control plants. These blockers significantly increased the efflux of K+ and Ca2+ as well as percentage leakage particularly in those of droughted plants. The above results indicated that the functioning of the calcium channels was negatively affected when Vicia faba was grown under drought conditions. However, much of the drought-induced disorders including sensitivity towards the applied calcium channel blockers could be ameliorated by supplemental Ca2+.  相似文献   

8.
Summary Calcium conducting channels were studied in blebs of sarcoplasmic reticulum described by Stein & Palade (1988). The calcium channels had at least three conductance states (70 pS, 50 pS and 37 pS) and were weakly selective for calcium ions, with a permeability ratio Ca2+ to K+ of about 3.4. The open probability of the channel was strongly voltage dependent, decreasing at positive membrane voltages. 10 m ryanodine and 5 m ruthenium red had no effect on this channel; neither did millimolar concentrations of ATP, Mg2+, caffeine, and Ca2+, implying that the calcium conducting channels are not ryanodine receptors. Several calcium pump inhibitors—namely, vanadate, AlF 4 , reactive red 120, and cyclopiazonic acid—had obvious effects on the calcium conducting channels, suggesting that the calcium conducting channel of SR membrane blebs is some form of the SR calcium pump.We thank the National Science Foundation for steadfast support.We thank Drs. F. Cohen, A. Fox, R. Levis and E. Rios for much useful help and criticism and Dr. G. Inesi for sending us his paper while in press.  相似文献   

9.
The involvement of Ca2+ ATPases in anthocyanin accumulation in callus cultures of Daucus carota was investigated under the influence of calcium and calcium channel modulators. Ionophore (I) treatment enhanced callus growth and anthocyanin accumulation. Increasing the amount of calcium applied to cultures enhanced the anthocyanin level. Ionophore treatment influenced the enhancement of Ca2+ATPase and endogenous titres of PAs. Addition of the calcium channel blocker verapamil or the calmodulin antagonist chlorpromazine to the A23187 (ionophore) treated cells caused a reduction in anthocyanin levels. Channel blockers reduced Ca2+ATPase activity, which was restored by ionophore treatment, showing the importance of calcium in anthocyanin production. Higher ethylene levels were also found in treatment with ionophore or 2X calcium. Thus the influence of ionophore in anthocyanin production and its inhibition by calcium channel modulators suggests that calcium plays an important role in the production of anthocyanin by carrot callus cultures.  相似文献   

10.
Summary 1. While intracellular calcium concentrations are closely regulated, two types of ion channels in neurons allow calcium influx: both voltage-activated and NMDA-activated channels are significantly permeable to calcium. In this study we compare the effects of lead (Pb2+) on currents carried through voltage-activated calcium channels and NMDA-activated channels.2. Pb2+ reduces voltage-activated calcium channel currents elicited by a voltage jump from –80 to 0 mV at 0.1 to 1 µM, with an IC50 of 0.64 µM and a Hill slope of 1.22. This effect was partially reversible and not voltage dependent. Sodium and potassium currents were relatively unaffected at Pb2+ concentrations sufficient to block calcium channel currents by more than 80%. Pb2+ is, thus, a potent, reversible and selective blocker of voltage-dependent calcium channel currents.3. A fast reversible and slow irreversible blocking action of Pb2+ was found on NMDA-activated currents. When Pb2+ was applied simultaneously with aspartate and glycine (Asp/Gly), the inward currents were rapidly and reversibly reduced in a dose-dependent manner with a minimum effective concentration below 2 µM and a total blockade (>80%) with 100 µM Pb2+. The IC50 was 45 µM and the Hill coefficient 1.1. Preincubation with 50 µM Pb2+ resulted in a greater reduction in the response to Asp/Gly/Pb2+. This effect was reversed within 2 to 5 sec of wash. The lack of voltage dependence suggests that Pb2+ does not block the channel but rather alters the binding of agonists. Prolonged superfusion of a cell with the Asp/Gly/Pb2+-containing external solution resulted in a slow and irreversible decrease in the Asp/Gly activated current. No clear threshold concentration is found for this slow and irreversible effect of Pb2+. This slow action might be more important for neurotoxic effects of Pb2+.  相似文献   

11.
Summary 1. We examined the actions of mercury (Hg2+) and zinc (Zn2+) on voltage-activated calcium channel currents of cultured rat dorsal root ganglion (DRG) neurons, using the whole-cell patch clamp technique.2. Micromolar concentrations of both cations reduced voltage-activated calcium channel currents. Calcium channel currents elicited by voltage jumps from a holding potential of –80 to 0 mV (mainly L- and N-currents) were reduced by Hg2+ and Zn2+. The threshold concentration for Hg2+ effects was 0.1 µM and that for Zn2+ was 10µM. Voltage-activated calcium channel currents were abolished (>80%) with 5µM Hg2+ or 200µM Zn2+. The peak calcium current was reduced to 50% (IC50) by 1.1µM Hg2+ or 69µM Zn2+. While Zn2+ was much more effective in reducing the T-type calcium channel current—activated by jumping from –80 to –35 mV—Hg2+ showed some increased effectiveness in reducing this current.3. The effects of both cations occurred rapidly and a steady state was reached within 1–3 min. While the action of Zn2+ was not dependent on an open channel state, Hg2+ effects depended partially on channel activation.4. While both metal cations reduced the calcium channel currents over the whole voltage range, some charge screening effects were detected with Hg2+ and with higher concentrations (>100µM) of Zn2+.5. As Zn2+ in the concentration range used had no influence on resting membrane currents, Hg2+ caused a clear inward current at concentrations µM.6. In the present study we discuss whether the actions of both metals on voltage-activated calcium channel currents are mediated through the same binding site and how they may be related to their neurotoxic effects.  相似文献   

12.
Twin-electrode voltage-clamp techniques were used to study the effect of calcium and calcium channel blockers on the transient outward current in isolated F76 and D1 neurones of Helix aspersa subesophageal ganglia in vitro (soma only preparation with no cell processes). On lowering extracellular Ca2+ concentration from 10 to 2 mm or removing extracellular calcium from the bathing medium, the threshold for this current shifted in a negative direction by 11.5 and 20 mV, respectively. On the other hand, increasing the extracellular Ca2+ concentration from 10 to 20 and to 40 mm shifted the steady-state inactivation curves in positive directions on the voltage axis by 7 and 15 mV, respectively. Upon application of calcium channel blockers, Co2+, La3+, Ni2+ and Cd2+, transient potassium current amplitude was reduced in a voltage-dependent manner, being more effective at voltages close to the threshold. The current was elicited even at a holding potential of −34 mV. The specific calcium channel blockers, amiloride and nifedipine did not shift the activation and steady-state inactivation curves and did not reduce the transient outward current amplitude. It was concluded that the transient outward current is not dependent on intracellular Ca2+ but that it is modulated by Ca2+ and di- and trivalent ions extracellularly. The effects of these ions are very unlikely to be due to a surface charge effect because the addition of La3+ (200 μm) completely reverses the shift in a hyperpolarizing direction when the extracellular Ca2+ concentration was reduced from 10 to 1 mm and additionally shifts the kinetics further still in a depolarizing direction. The responses seen here are consistent with a specific effect of di- and trivalent ions on the transient outward current channels leading to a modification of gating. Received: 30 March 1999/Revised: 5 October 1999  相似文献   

13.
Cilnidipine is a 1,4-dihydropyridine derived L/N-type calcium channel dual blocker possessing neuroprotective and analgesic effects which are related to its N-type calcium channel inhibitory activity. In order to find specific N-type calcium channel blockers with the least effects on cardiovascular system, we performed structure-activity relationship study on APJ2708, which is a derivative of cilnidipine, and found a promising N-type calcium channel blocker 21b possessing analgesic effect in vivo with a 1600-fold lower activity against L-type calcium channels than that of cilnidipine.  相似文献   

14.
Voltage-gated calcium channel blockers are widely used for the management of cardiovascular diseases, however little is known about their effects on cardiac cells in vitro.We challenged neonatal ventricular cardiomyocytes (CMs) with therapeutic L-type and T-type Ca2+ channel blockers (nifedipine and mibefradil, respectively), and measured their effects on cell stress and survival, using fluorescent microscopy, Q-PCR and Western blot. Both nifedipine and mibefradil induced a low-level and partially transient up-regulation of three key mediators of the Unfolded Protein Response (UPR), indicative of endoplasmic (ER) reticulum stress. Furthermore, nifedipine triggered the activation of macroautophagy, as evidenced by increased lipidation of microtubule-associated protein 1 light chain 3 (LC3), decreased levels of polyubiquitin-binding protein p62/SQSTM1 and ubiquitinated protein aggregates, that was followed by cell death. In contrast, mibefradil inhibited CMs constitutive macroautophagy and did not promote cell death. The siRNA-mediated gene silencing approach confirmed the pharmacological findings for T-type channels.We conclude that L-type and T-type Ca2+ channel blockers induce ER stress, which is divergently transduced into macroautophagy induction and inhibition, respectively, with relevance for cell viability. Our work identifies VGCCs as novel regulators of autophagy in the heart muscle and provides new insights into the effects of VGCC blockers on CMs homeostasis, that may underlie both noxious and cardioprotective effects.  相似文献   

15.
The effects of Ca and La on Cd transport across apical and basolateral gill surfaces were examined in isolated perfused Carcinus gills. In the gills exposed to diluted sea water enriched with calcium by addition of CaCl2 to 11.9 and 15.9 mmol·l-1 the Cd influxes decreased by 55% and 85%, respectively, compared to those observed in diluted sea water (6.9 mmol Ca·l-1). When Ca was added to the perfusate to increase its concentration at the basolaterally oriented gill surfaces, Cd influx inhibition was less pronounced than when Ca was added apically. The effect of Ca on 109Cd influxes appears, therefore, to be exerted at the apical gill surface. Additionally, the effects of various concentrations of the non-specific Ca channel blocker La (added to diluted sea water) on 109Cd influxes in isolated perfused Carcinus gills were studied. 109Cd influxes are shown to be lanthanum concentration dependent. The half-maximum inhibition of cadmium influxes by La occurred at 1.4·10-6 mol·l-1. Cadmium transport is discussed in terms of non-specific influx utilizing Ca channels.Abbreviations DSW diluted sea water - cpm counts per minute - BBMV brush-border membrane vesicles  相似文献   

16.
Effects of cobalt ions (Co2+) on horizontal cells in low extracellular calcium were examined in isolated, superfused carp retinas. While 0.1mmol/L Co2+ completely suppressed both rod- and cone-driven horizontal cells in normal Ringer's solution, it enhanced light responses of cone horizontal cells in low (0.1mmol/L) calcium. The enhancement of the cone horizontal cell response by Co2+ was not caused by changes in light responsiveness of cone photoreceptors. Moreover, application of 50μmol/L IBMX, an inhibitor of phosphodiester enzyme, reduced the suppressive effect of 0.1 mmol/L Co2+ in normal Ringer's solution. In consequence, the above-described enhancement of the cone horizontal cell light responsiveness may be due to a depolarization of cones caused by low calcium, which increases the activity of voltage-dependent calcium channels at cone terminals.  相似文献   

17.
Calonectria leaf spot, caused by Calonectria pteridis, is a serious problem in Eucalyptus crops in both nursery and the field. Under ideal conditions, the disease can cause severe defoliation. It is known that calcium and potassium are directly related to the plant's resistance to pathogens. Thus, the knowledge of how a balanced fertilization of Ca and K interferes in the distribution of these nutrients at the infection site would contribute to elucidate the resistance of the plant related to its nutrition. This study investigated the effect of calcium and potassium fertilizer application on the content and distribution of these nutrients in the symptomatic leaf area, transition zone and asymptomatic leaf area over time. Eucalyptus seedlings were grown in nutrient solution under different Ca and K treatments (6 mmol/L K + 4 mmol/L Ca, 6 mmol/L K + 8 mmol/L Ca and 9 mmol/L K + 12 mmol/L Ca) and inoculated with C. pteridis. Leaves were removed at 24, 48 and 72 hr after inoculation (hai) and evaluated by X-ray microanalysis. The highest calcium content among the different leaf areas was observed in the symptomatic area, and the levels in this area increased over time, with the highest mean value observed at 72 hai in the 6K + 8Ca treatment. In the other treatments, the mean calcium content peaked at 48 hai and then decreased. A similar pattern in asymptomatic tissue was observed for potassium in the 6K + 8Ca treatment. Fertilization with calcium and potassium directly affected the demand and availability of nutrients at different times during infection. These results demonstrate that plant defence responses and their continuity over time during infection rely on balanced calcium and potassium fertilization because these nutrients are directly involved in plant resistance to the pathogen.  相似文献   

18.
Endothelin-1 (ET-1) is a potent vasoconstrictor peptide that induces characteristically long-lasting contractions. We used rat aortic rings to investigate the role of protein kinase C (PKC) in ET-1-induced contractions and prostacyclin (PGI2) release. ET-1 (10−9 M) produced a gradual and sustained contraction in rat aortic rings. Pretreatment of aortic rings with different doses (10−9 M and 10−6 M) of diltiazem (voltage-sensitive L-type calcium channel blocker) produced significant inhibition of ET-1- and PDBu-induced contractions and PGI2 release. Inhibition was first noted at 10−9 M and was complete at 10−6 M. Conversely, pretreatment of aortic rings with different doses (10−9 M and 10−6 M) of calcium channel blockers (thapsigargin, an intracellular calcium channel blocker, or conotoxin, a voltage-sensitive N-type calcium channel blocker) produced no changes on ET-1- or PDBu-induced contraction or PGI2 release. These results provide further support for the concept that PKC mediates ET-induced contractions and PGI2 release in rat aortic rings via an increase in intracellular calcium and this increase is due to the influx of extracellular calcium and not to the release of calcium from the sarcoplasmic reticulum.  相似文献   

19.
The antimalarial drugs, quinacrine, chloroquine, quinine, primaquine, and mefloquine, share structural similarities with W-7, a compound that inhibits calcium-dependent backward swimming and calcium currents in Paramecium. Therefore, we tested whether antimalarial drugs also inhibit backward swimming and calcium currents in P. calkinsi. When the Paramecium is depolarized in high potassium medium, voltage-dependent calcium channels in the ciliary membrane open causing the cell to swim backward for 30 to 70 s. Application of calcium channel inhibitors, such as W-7, reduce the duration of backward swimming. In 0.05 mM calcium, quinacrine, mefloquine, quinine, chloroquine, primaquine and W-7 all reduced the duration of backward swimming. These effects were seen in sodium-containing and sodium-free high potassium solutions as well as sodium-free depolarizing solutions containing potassium channel blockers. In these low calcium solutions, backward swimming was inhibited by 50% at concentrations ranging from 100 nM to 30 M. At higher calcium concentrations (1 mM or 15 mM), the effects of the antimalarials and W-7 were reduced. The effects of quinacrine and W-7 were tested directly on calcium currents using the two microelectrode voltage clamp technique. In 15 mM calcium, 100 M quinacrine and 100 M W-7 reduced the peak calcium current by 51% and 42%, respectively. Thus, antimalarial drugs reduce calcium currents in Paramecium calkinsi.  相似文献   

20.
Ethanol-induced changes of CO2 production were compared in three strains ofSaccharomyces cerevisiœ. CaCl2 and MgCl2 exerted protective effects against the action of ethanol. Optimal concentrations ensuring maximum of CO2 production at 10% (V/V) of ethanol under non-growing conditions were 3 mmol/L Ca2+ and 2 mmol/L Mg2+. Yeast growth with and without ethanol addition was stimulated by Mg2+ more than by Ca2+ during fermentation, whereas ethanol production was more efificient when both Ca2+ and Mg2+ were added.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号