首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ability of barley ribosomal genes to cope with damage produced in vivo by the radiomimetic agent bleomycin was investigated. Repair kinetics of bleomycin-induced double-strand breaks in ribosomal and total genomic DNA was compared. Induction and repair of double-strand breaks in defined regions of the ribosomal genes was also analyzed. Preferential sensitivity of barley linker DNA towards bleomycin treatment in vivo was established. Relatively higher yield of initially induced double-strand breaks in genomic DNA in comparison to ribosomal DNA was also found. Fragments containing intergenic spacers of barley rRNA genes displayed higher sensitivity to bleomycin than the coding sequences. No heterogeneity in the repair of DSB between transcribed and non-transcribed regions of ribosomal genes was detected. Data indicate that DSB repair in barley rDNA, although more efficient than in genomic DNA, does not correlate with the activity of nucleolus organizer regions.  相似文献   

2.
Induction and rejoining of DNA double-strand breaks in bladder tumor cells   总被引:8,自引:0,他引:8  
The induction and rejoining of radiation-induced double-strand breaks (DSBs) in cells of six bladder tumor cell lines (T24, UM-UC-3, TCC-SUP, RT112, J82, HT1376) were measured using the neutral comet assay. Radiation dose-response curves (0-60 Gy) showed damage (measured as mean tail moment) for five of the cell lines in the same rank order as cell survival (measured over 0-10 Gy), with the least damage in the most radioresistant cell line. Damage induction correlated well with clonogenic survival at high doses (SF10) for all six cell lines. At the clinically relevant dose of 2 Gy, correlation was good for four cell lines but poor for two (TCC-SUP and T24). The rejoining process had a fast and slow component for all cell lines. The rate of these two components of DNA repair did not correlate with cell survival. However, the time taken to reduce the amount of DNA damage to preirradiated control levels correlated positively with cell survival at 10 Gy but not 2 Gy; radioresistant cells rejoined the induced DSBs to preirradiation control levels more quickly than the radiosensitive cells. Although the results show good correlation between SF10 and DSBs for all six cell lines, the lack of correlation with SF2 for TCC-SUP and T24 cells would suggest that a predictive test should be carried out at the clinically relevant dose. At present the neutral comet assay cannot achieve this.  相似文献   

3.
Induction of DNA double-strand breaks by 157Gd neutron capture   总被引:3,自引:0,他引:3  
The rationale of boron (10B) neutron capture therapy (BNCT) is based on the high thermal neutron capture cross section of 10B and the limited maximum range (about one cell diameter) of the high LET fission products of the boron neutron capture (NC) reaction. The resulting radiochemical damage is confined to the cell containing the BNC reaction. Although other nuclides have higher thermal neutron capture cross sections than 10B, NC by such nuclides results in the emission of highly penetrating gamma rays. However, gadolinium-157 (157Gd) n-gamma reaction is also accompanied by some internal conversion and, by implication, Auger electron emission. Irradiation of Gd3+-DNA complexes with thermal neutrons results in the induction of DNA double-strand (ds) breaks, but the effect is largely abrogated in the presence of EDTA. Thus, by analogy with the effects of decay of Auger electron-emitting isotopes such as 125I, the Gd NC event must take place in the close proximity of DNA in order to induce a DNA ds break. It is proposed that 157Gd-DNA ligands therefore have potential in NCT. The thermal neutron capture cross section of 157Gd, a nonradioactive isotope, is more than 50 times that of 10B.  相似文献   

4.
DNA double-strand breaks are the molecular lesions the repair of which leads to the reappearance of the shoulder observed in split-dose experiments. This conclusion is based on results obtained with the help of a diploid yeast mutant rad 54-3 which is temperature-conditional for the repair of DNA double-strand breaks. Two repair steps must be met to yield the reappearance of the shoulder on a split-dose survival curve: the repair of double-strand breaks during the interval between two doses and on the nutrient agar plate after the second dose. In yeast lethality may be attributable to either an unrepaired double-strand break (i.e. a double-strand break is a potentially lethal lesion) or to the interaction of two double-strand breaks (misrepair of double-strand breaks). Evidence is presented that the two cellular phenomena of liquid holding recovery (repair of potentially lethal damage) and of split-dose recovery (repair of sublethal damage) are based on the repair of the same molecular lesion, the DNA double-strand break.  相似文献   

5.
Escherichia coli dam mutants are sensitized to the cytotoxic action of base analogs, cisplatin and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), while their mismatch repair (MMR)-deficient derivatives are tolerant to these agents. We showed previously, using pulse field gel electrophoresis (PFGE), that MMR-mediated double-strand breaks (DSBs) are produced by cisplatin in dam recB(Ts) cells at the non-permissive temperature. We demonstrate here that the majority of these DSBs require DNA replication for their formation, consistent with a model in which replication forks collapse at nicks or gaps formed during MMR. DSBs were also detected in dam recB(Ts) ada ogt cells exposed to MNNG in a dose- and MMR-dependent manner. In contrast to cisplatin, the formation of these DSBs was not affected by DNA replication and it is proposed that two separate mechanisms result in DSB formation. Replication-independent DSBs arise from overlapping base excision and MMR repair tracts on complementary strands and constitute the majority of detectable DSBs in dam recB(Ts) ada ogt cells exposed to MNNG. Replication-dependent DSBs result from replication fork collapse at O(6)-methylguanine (O(6)-meG) base pairs undergoing MMR futile cycling and are more likely to contribute to cytotoxicity. This model is consistent with the observation that fast-growing dam recB(Ts) ada ogt cells, which have more chromosome replication origins, are more sensitive to the cytotoxic effect of MNNG than the same cells growing slowly.  相似文献   

6.
Utsumi, H., Tano, K., Takata, M., Takeda, S. and Elkind, M. M. Requirement for Repair of DNA Double-Strand Breaks by Homologous Recombination in Split-Dose Recovery. Radiat. Res. 155, 680-686 (2001). Split-dose recovery has been observed under a variety of experimental conditions in many cell systems and is believed to be the result of the repair of sublethal damage. It is considered to be one of the most widespread and important cellular responses in clinical radiotherapy. To study the molecular mechanism(s) of this repair, we analyzed the knockout mutants KU70-/-, RAD54-/-, and KU70-/-/RAD54-/- of the chicken B-cell line, DT40. RAD54 participates in the recombinational repair of DNA double-strand breaks (DSBs), while members of the KU family of proteins are involved in nonhomologous end joining. Split-dose recovery was observed in the parent DT40 and the KU70-/- cells. Moreover, the split-dose survival enhancement had all of the characteristics demonstrated earlier for the repair of sublethal damage, e.g., the reappearance of the shoulder on the survival curve with dose fractionation; cyclic fluctuation in cell survival at 37 degrees C; repair and no cyclic fluctuation at 25 degrees C. These results strongly suggest that repair of sublethal damage is due to DSB repair mediated by homologous recombination, and that these DNA DSBs constitute sublethal damage.  相似文献   

7.
Understanding how cells maintain genome integrity when challenged with DNA double-strand breaks (DSBs) is of major importance, particularly since the discovery of multiple links of DSBs with genome instability and cancer-predisposition disorders. Ionizing radiation is the agent of choice to produce DSBs in cells; however, targeting DSBs and monitoring changes in their position over time can be difficult. Here we describe a procedure for induction of easily recognizable linear arrays of DSBs in nuclei of adherent eukaryotic cells by exposing the cells to alpha particles from a small Americium source (Box 1). Each alpha particle traversing the cell nucleus induces a linear array of DSBs, typically 10-20 DSBs per 10 mum track length. Because alpha particles cannot penetrate cell-culture plastic or coverslips, it is necessary to irradiate cells through a Mylar membrane. We describe setup and irradiation procedures for two types of experiments: immunodetection of DSB response proteins in fixed cells grown in Mylar-bottom culture dishes (Option A) and detection of fluorescently labeled DSB-response proteins in living cells irradiated through a Mylar membrane placed on top of the cells (Option B). Using immunodetection, recruitment of repair proteins to individual DSB sites as early as 30 s after irradiation can be detected. Furthermore, combined with fluorescence live-cell microscopy of fluorescently tagged DSB-response proteins, this technique allows spatiotemporal analysis of the DSB repair response in living cells. Although the procedures might seem a bit intimidating, in our experience, once the source and the setup are ready, it is easy to obtain results. Because the live-cell procedure requires more hands-on experience, we recommend starting with the fixed-cell application.  相似文献   

8.
Single-strand breaks (ssb) in opposite strands of DNA can be sufficiently near that a double-strand break (dsb) results. A theory is presented by which the maximum number h of base pairs which cannot prevent double-strand breakage can be determined from the rates of production of ssb and dsb. The assumptions required to derive the necessary equations as well as the range of validity of the equations are discussed in detail. In the experiments ssb and dsb were produced by x-irradiation in buffers which do not eliminate indirect effects and were measured by analytical ultracentrifugation. Values of h have been determined in low and high ionic strength and in low ionic strength over a range of temperatures. The values, 2.64 and 15.8, were obtained for high and low ionic strength, respectively.  相似文献   

9.
DNA double-strand breaks (DSBs) are among the most deleterious DNA lesions, which if unrepaired or repaired incorrectly can cause cell death or genome instability that may lead to cancer. To counteract these adverse consequences, eukaryotes have evolved a highly orchestrated mechanism to repair DSBs, namely DNA-damage-response (DDR). DDR, as defined specifically in relation to DSBs, consists of multi-layered regulatory modes including DNA damage sensors, transducers and effectors, through which DSBs are sensed and then repaired via DNAprotein interactions. Unexpectedly, recent studies have revealed a direct role of RNA in the repair of DSBs, including DSB-induced small RNA (diRNA)-directed and RNA-templated DNA repair. Here, we summarize the recent discoveries of RNA-mediated regulation of DSB repair and discuss the potential impact of these novel RNA components of the DSB repair pathway on genomic stability and plasticity.  相似文献   

10.
2-Chlorodeoxyadenosine was found to induce DNA double-strand breaks as well as cell death in log-phase Chinese hamster V79 cells. The induction of DNA double-strand breaks, measured by a neutral elution technique, was observed after a 2-h incubation of the cells in the presence of 5 microM of 2-chlorodeoxyadenosine, but these breaks were almost rejoined by a subsequent 1-h incubation, even though this drug was present in the medium during incubation. This repair was prevented by the addition of nicotinamide, which is known to inhibit poly(ADP-ribose) synthesis that is strongly associated with the DNA ligation, but not prevented by the addition of 9-beta-D-arabinofuranosyladenine (araA), which is known to inhibit DNA polymerization. These results suggest that the repair of CdA-induced double-strand breaks is achieved by ligation alone without DNA polymerization. When 35 microM of cycloheximide and 1.3 mM of dibutyryl cAMP were added to the medium, it was found that the induction of double-strand breaks by 2-chlorodeoxyadenosine was suppressed, while the cytotoxicity of 2-chlorodeoxyadenosine measured by colony-forming ability was not interfered with. These results suggest that the induction of DNA double-strand breaks is not associated with the cytotoxicity of this drug.  相似文献   

11.
Induction of DSBs in the diploid yeast, Saccharomyces cerevisiae, was measured by pulsed-field gel electrophoresis (PFGE) after the cells had been exposed on membrane filters to a variety of energetic heavy ions with values of linear energy transfer (LET) ranging from about 2 to 11,500 keV/microm, (241)Am alpha particles, and 80 keV X rays. After irradiation, the cells were lysed, and the chromosomes were separated by PFGE. The gels were stained with ethidium bromide, placed on a UV transilluminator, and analyzed using a computer-coupled camera. The fluorescence intensities of the larger bands were found to decrease exponentially with dose or particle fluence. The slope of this line corresponds to the cross section for at least one double-strand break (DSB), but closely spaced multiple breaks cannot be discriminated. Based on the known size of the native DNA molecules, breakage cross sections per base pair were calculated. They increased with LET until they reached a transient plateau value of about 6 x 10(-7) microm(2) at about 300-2000 keV/microm; they then rose for the higher LETs, probably reflecting the influence of delta electrons. The relative biological effectiveness for DNA breakage displays a maximum of about 2.5 around 100-200 keV/microm and falls below unity for LET values above 10(3) keV/microm. For these yeast cells, comparison of the derived breakage cross sections with the corresponding cross section for inactivation derived from the terminal slope of the survival curves shows a strong linear relationship between these cross sections, extending over several orders of magnitude.  相似文献   

12.
13.
Five recently established cell lines of human carcinoma of the cervix of varying radiosensitivity have been used to determine whether the induction or rejoining of DNA double-strand breaks (dsb) shows any correlation with radiosensitivity or radiation recovery capacity. Double-strand DNA breaks have been measured using neutral filter elution at pH 9.6. The number of breaks induced immediately after irradiation with doses of 10 to 40 Gy 60Co gamma rays appeared to show some correlation with radiosensitivity particularly after 10 Gy; the two more radiosensitive lines incurred more breaks than the more radioresistant lines. In addition, the shape of the induction curve with dose was linear for the two sensitive lines but curvilinear for the resistant lines. Despite the dose scales being different, this mirrored their respective cell survival curve shapes. After 30 or 50 Gy irradiation, rejoining of breaks appeared to be rapid and almost complete within 60 min at 37 degrees C for the three resistant lines. However, for the sensitive lines, one line (HX160c) in particular exhibited a reduced rate of dsb rejoining. In addition, a residual level of dsb was present in this line even after allowing rejoining for 3 h. While induction and rejoining of DNA dsb therefore appears to be a factor in determining radiosensitivity, at doses relevant to cellular survival (up to 10 Gy), the greater induction of DNA dsb in radiosensitive lines may play a significant role in determining the cellular response to ionizing radiation.  相似文献   

14.
Eukaryotic cells have developed conserved mechanisms to efficiently sense and repair DNA damage that results from constant chromosomal lesions. DNA repair has to proceed in the context of chromatin, and both histone-modifiers and ATP-dependent chromatin remodelers have been implicated in this process. Here, we review the current understanding and new hypotheses on how different chromatin-modifying activities function in DNA repair in yeast and metazoan cells.  相似文献   

15.
DNA double-strand breaks (DSBs) are the most hazardous lesions arising in the genome of eukaryotic organisms, and yet occur normally during DNA replication, meiosis, and immune system development. The efficient repair of DSBs is crucial in maintaining genomic integrity, cellular viability, and the prevention of tumorigenesis. As a consequence, eukaryotic cells have evolved efficient mechanisms that sense and respond to DSBs and ultimately repair the break. The swiftness of the DNA DSB response has paved to the identification of sensors and transducers which allowed to generate a hierarchical signaling paradigm depicting the transduction of the damage signal to numerous downstream effectors (Fig. 1). The function of such effectors involve posttranslational modifications through phosphorylation, acetylation, and methylation of the substrates. This review will address the control of DSBs in damaged eukaryotic cells, the physiological processes that require the introduction of a DSB into the genome, and the maintenance of DSBs in non-damaged cells.  相似文献   

16.
17.
DNA双链断裂修复与重症联合免疫缺陷   总被引:1,自引:0,他引:1  
Wang KY  Zhao YH  Li WG 《生理科学进展》2008,39(2):182-184
DNA双链断裂(double-strand breaks, DSBs)是细胞DNA损伤的主要类型,它的修复通过同源重组(HR)和非同源末端连接(NHEJ)两种机制实现.NHEJ是人和哺乳动物细胞DSBs修复的重要通路,主要由DNA依赖性蛋白激酶(DNA-PK)、X射线修复交叉互补蛋白4(XRCC4)、DNA连接酶Ⅳ、Artemis、XLF/Cernunnos和其它DNA损伤修复辅助因子组成.本文重点介绍了NHEJ机制主要成分的特性及其功能,以及这些组分的基因发生突变或缺失所引起的DSBs修复缺陷与辐射敏感性重症联合免疫缺陷(radiosensitive severe combined immunodeficiencies, RS-SCIDs).  相似文献   

18.
DNA双链断裂损伤修复系统研究进展   总被引:4,自引:1,他引:3  
多种内源或外源因素都能造成细胞基因组DNA损伤,细胞内建立了复杂的修复系统来应对不同形式的损伤。其中DNA双链断裂(DNA double-strand breaks,DSBs)作为最严重的损伤形式,主要激活同源重组修复(Homologous recombination repair)和非同源末端连接(Non-homologous end joining)通路。这两条通路都是由多个修复元件参与、经过多步反应的复杂过程。两者各具特点、协同作用,共同维护细胞基因组的稳定性。对其分子机制的阐明为肿瘤放化疗的辅助治疗提供了潜在的作用靶点。  相似文献   

19.
Ku recruits XLF to DNA double-strand breaks   总被引:3,自引:0,他引:3  
XRCC4-like factor (XLF)--also known as Cernunnos--has recently been shown to be involved in non-homologous end-joining (NHEJ), which is the main pathway for the repair of DNA double-strand breaks (DSBs) in mammalian cells. XLF is likely to enhance NHEJ by stimulating XRCC4-ligase IV-mediated joining of DSBs. Here, we report mechanistic details of XLF recruitment to DSBs. Live cell imaging combined with laser micro-irradiation showed that XLF is an early responder to DSBs and that Ku is essential for XLF recruitment to DSBs. Biochemical analysis showed that Ku-XLF interaction occurs on DNA and that Ku stimulates XLF binding to DNA. Unexpectedly, XRCC4 is dispensable for XLF recruitment to DSBs, although photobleaching analysis showed that XRCC4 stabilizes the binding of XLF to DSBs. Our observations showed the direct involvement of XLF in the dynamic assembly of the NHEJ machinery and provide mechanistic insights into DSB recognition.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号