首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Steady-state chemostat cultures of Azotobacter vinelandii were established in a simple defined medium that had been chemically purified to minimize Mo and that contained no utilizable combined N source. Growth was dependent on N2 fixation, the limiting nutrient being the Mo contaminating the system. The Mo content of the organisms was at least 100-fold lower than that of Mo-sufficient cultures, and they lacked the characteristic g = 3.7 e.p.r. feature of the MoFe-protein of nitrogenase. A characteristic of nitrogenase activity in vivo in Mo-limited populations was a disproportionately low activity for acetylene reduction, which was 0.3 to 0.1 of that expected from the rate of N2 reduction. Acetylene was also a poor substrate in comparison with protons as a substrate for nitrogenase, and did not markedly inhibit H2 evolution, in contrast with Mo-sufficient populations. In batch cultures in similar medium or 'spent' chemostat medium inoculated with Mo-limited organisms, the addition of Mo elicited a biphasic increased growth response at concentrations as low as 2.5 nM, provided that sufficient Fe was supplied. In this system V did not substitute for Mo, and Mo-deficient cultures ceased growth at a 25-fold lower population density compared with cultures supplemented with Mo. Nitrogenase component proteins could not be unequivocally detected by visual inspection of fractionated crude extracts of Mo-limited organisms. 35SO42-pulse-labelling studies also showed that the rate of synthesis of the MoFe-protein component of nitrogenase was too low to be quantified. However, the Fe-protein of nitrogenase was apparently synthesized at high rates. The discussion includes an evaluation of the possibility that A. vinelandii possesses an Mo-independent N2-fixation system.  相似文献   

2.
When the exhaustion of sucrose or sulfate or the induction of encystment (by incubation in 0.2% beta-hydroxybutyrate) leads to termination of growth in Azotobacter vinelandii batch cultures, the nitrogenase levels in the organisms decreased rapidly, whereas glutamate synthase and glutamine synthetase levels remained unaltered. Glutamate dehydrogenase activities were low during the whole culture cycle, indicating that ammonia assimilation proceeds via glutamine. Toward depletion of sucrose or during induction of encystment, slight secretion of ammonia with subsequent reabsorption was occasionally observed, whereas massive ammonia excretion occurred when the sulfate became exhausted. The extracellular ammonia levels were paralleled by changes in the glutamine synthetase activity. The inactivation of the nitrogenase is explained as a result of rising oxygen tension, a consequence of a metabolic shift-down (reduced respiration) that occurs in organisms entering the stationary phase.  相似文献   

3.
Amino acid consumption was studied with batch and continuous chemostat cultures of Chloroflexus aurantiacus grown phototrophically in complex medium with casamino acids (Pierson and Castenholz 1974). Amino acids like Arg, Asx, Thr, Ala, Tyr, which were utilized during the early exponential phase by cells grown in batch cultures were consumed in chemostat cultures essentially at any of the dilution rates employed (0.018–0.104 h-1). Those amino acids which were taken up during subsequent phases of growth were consumed in chemostat cultures preferentially at low dilution rates. For example, the consumption of Glx was enhanced during the late exponential phase and at low dilution rates. At high dilution rates Glx was not consumed at all. Since Glx utilization largely paralleled bacteriochlorophyll formation, it is discussed that formation of the photopigment depends on the intracellular availability of Glu as the exclusive precursor for tetrapyrrole synthesis.  相似文献   

4.
The kinetics of growth and alginate production from glucose in a nitrogen and phosphate-rich medium by Azotobacter vinelandii DSM576 were studied in a laboratory fermenter at pH 7 and 35°C. Batch fermentations were carried out both without control of dissolved oxygen concentration (DO) and at 1, 2, 5 and 10% DO. Although growth was faster at higher DO, maximum biomass concentration was lower. No alginate was produced at 10% DO. Alginate production was faster at 5 and 2% DO but higher alginate concentrations and yields were obtained without DO control. Alginate production was growth-associated at 5% DO, but significant amounts of alginate were produced after growth had stopped at lower DO values. In fermentations without DO control the molecular weight of the polymer reached a maximum (11–17.6 × 104) when specific growth rate was between 0.02 and 0.04 h−1 and residual concentration of ammoniacal nitrogen was between 0.01 and 0.02 g L−1 and then sharply decreased. Received 15 August 1997/ Accepted in revised form 08 January 1998  相似文献   

5.
Summary Azotobacter vinelandii strain E was cultivated in PO 4 -- limited continuous cultures. The influence of growth medium Ca++ levels on dry cell weight and alginate production and composition was examined. Low Ca++ concentrations (<0.34 mM) were observed to inhibit growth, particularly in cultures maintained at a high dilution rate (D=0.32 hr-1). In cultures with high levels of polysaccharide (>1.0 g l-1), the production of alginate with a predominantly heteropolymeric structure was favoured by increasing Ca++ levels. In cultures containing less polysaccharide (<1.0 g l-1) increasing Ca++ levels (0.068–0.34 mM Ca++) resulted in the production of alginates high in polyguluronate. With further increases in Ca++ levels (0.34–2.72 mM Ca++) synthesis of alginates with a more heteropolymeric structure occurred. It is proposed that extracellular epimerisation of alginate is influenced by intermolecular associations, the formation of which is mediated by both Ca++ concentration and the concentration of the polymer itself.  相似文献   

6.
Azotobacter vinelandii was grown diazotrophically in sucrose-limited chemostat cultures at either 12, 48, 108, 144 or 192 M dissolved oxygen. Steady state protein levels and growth yield coefficients (Y) on sucrose increased with increasing dilution rate (D). Specific rate of sucrose consumption (q) increased in direct proportion to D. Maintenance coefficients (m) extrapolated from plots of q versus D, as well as from plots of 1/Y versus 1/D exhibited a nonlinear relationship to the dissolved oxygen concentration. Constant maximal theoretical growth yield coefficients (Y G) of 77.7 g cells per mol of sucrose consumed were extrapolated irrespective of differences in ambient oxygen concentration. For comparison, glucose-, as well as acetate-limited cultures were grown at 108 M oxygen. Fairly identical m- and Y G-values, when based on mol of substrate-carbon with glucose and sucrose grown cells, indicated that both substrates were used with the same efficiency. However, acetate-limited cultures showed significantly lower m- and, at comparable, D, higher Y-values than cultures limited by either sucrose or glucose. Substrate concentrations (K s) required for half-maximal growth rates on sucrose were not constant, they increased when the ambient oxygen concentration was raised and, at a given oxygen concentration, when D was decreased. Since biomass levels varied in linear proportion to K s these results are interpreted in terms of variable substrate uptake activity of the culture.Abbreviations D dilution rate - K s substrate concentration required for half maximal growth rate - m maintenance coefficient - q specific rate of substrate consumption - Y growth yield coefficient - Y G maximum theoretical growth yield coefficient  相似文献   

7.
Summary Influence of laboratory growth conditions and soil conditions on the survival of Pseudomonas fluorescens R1, a spontaneous rifamycin-resistant mutant of P. fluorescens W1, in soil was investigated. Strain R1 is antagonistic to Gaeumannomyces graminis and Rhizoctonia solani in vitro. Characteristics of W1 are scarcely different from those of R1 with respect to growth rates, plasmids, and the ability to use 56 substrates as carbon sources. Growth conditions varied were: medium composition, pH, temperature, carbon source, and nitrogen source. Strain R1 was released into a laboratory model ecosystem and soil conditions were varied with respect to sterility, texture, moisture content, temperature, and addition of carbon and nitrogen sources. The effect of initial population density of R1 on survival in soil was also investigated. The survival of R1 in soil was influenced only to a small extent by different growth conditions; soil conditions were of greater importance. However, no conditions could be found to maintain more than 0.7% of the initial number of cells in soil. No positive rhizosphere effect in glasshouse experiments was observed. Bacterization of wheat seeds with suspensions of R1 led to an increase in cells on developing roots. A further Pseudomonas strain, P. fluorescens W2, isolated from wheat roots, showed the same survival characteristics as R1.  相似文献   

8.
9.
Batch cultures ofA. vinelandii in ammonium phosphate-limited and N-free phosphate-limited media were compared with control cultures (N-free phosphate-sufficient media). The effects of phosphate limitation on growth were determined by viable cells counts. Under phosphate-limitation conditions, growth inhibition and decreased viability were observed. Intracellular levels of RNA, poly-3-hydroxybutyrate, phosphate and oxygen uptake were significantly affected by phosphate limitation. When phosphate-limited cultures were examined microscopically, pleomorphism was more marked than in control cultures. Also phosphate-limited cells showed an increase in resistance to UV irradiation, mechanical disruption, desiceation and the combined action of ethylenediaminetetraacetie acid and lysozyme.  相似文献   

10.
When Azotobacter vinelandii, growing diazotrophically in chemostat culture, was subjected to sudden increases in the ambient oxygen concentration (oxygen stress), nitrogenase activity was switched off and cellular ATP pools decreased at rates depending on the stress level. Following a fast decrease, the ATP pool approached a lower level. When the stress was released, these effects were reversed. The reversible decrease of the ATP pool upon oxygen stress could also be observed with cultures assimilating ammonium and, at the same time, fixing dinitrogen because of growth at a high C/N ratio but not with cultures growing only at the expense of ammonium. When strains OP and UW136 of A. vinelandii were subjected to long-term increases in ambient oxygen, the sizes of cellular ATP pools eventually started to increase to the level before stress and diazotrophic growth resumed. The cytochrome d-deficient mutant MK5 of A. vinelandii, however, impaired in aerotolerant diazotrophic growth, was unable to recover from stress on the basis of its ATP pool. The results suggest that adaptation to higher ambient oxygen depends on increased ATP synthesis requiring increased electron flow through the entire respiratory chain, which is possible only in combination with the more active, yet possibly uncoupled, branch terminated by cytochrome d. It is proposed that the decrease of the cellular ATP level under oxygen stress resulted from the increased energy and electron donor requirement of nitrogenase in reacting with oxygen.  相似文献   

11.
Azotobacter vinelandii growing in oxygen controlled chemostat culture was subjected to sudden increases of ambient oxygen concentrations (oxygen stress) after adaptation to different oxygen concentrations adjustable with air (100% air saturation corresponds to 225±14 M O2). Inactivations of cellular nitrogenase during stress (switch off) as well as after release of stress (switch on) were evaluated in vivo as depending on stress duration and stress height (pO2). Switch off was at its final extent within 1 min of stress. The extent of switch off, however, increased with stress height and was complete at pO2 between 8–10% air saturation irrespective of different oxygen concentrations the organisms were adapted to before stress, indicating that switch off is adaptable. Inactivation of nitrogenase measurable after switch on represents irreversible loss of activity. Irreversible inactivation was at its characteristic level within less than 3 min of stess and at a pO2 of less than 1% air saturation. The level of irreversible inactivation increased linearly with the oxygen concentration the organisms were adapted to before stress. Thus adaptation of cells to increased oxygen concentrations did not prevent increased susceptibility of nitrogenase to irreversible inhibition during oxygen stress. The fast response of irreversible inactivation at low stress heights suggests that it takes place already during stress. Thus switch off comprised both a reversible and an irreversible phase. The data showed that reversible inactivation of nitrogenase was less susceptible to oxygen stress than irreversible inactivation. A basic pre-requisite of the hypothesis of respiratory protection of nitrogenase, i.e. the proposed relationship between respiratory activities and the protection of nitrogenase from irreversible inhibition by oxygen, was not supported by the results of this report.  相似文献   

12.
Superoxide dismutase and catalase activities were studied in Azotobacter vinelandii grown diazotrophically at different ambient oxygen concentrations in continuous culture. Activities were expressed either as specific activity or activity per cell. Specific superoxide dismutase activity increased by a factor of 1.6 with increasing oxygen concentration from about 1% to 90% air saturation of the growth medium whereas specific catalase activity increased only slightly, if at all. Since cell volumes increased in parallel to increases in the oxygen concentration cellular superoxide dismutase activities increased by a factor of 4.3 while cellular catalase activities increased by a factor of 3.3. Under all conditions only the Fe-containing form of superoxide dismutase was detected. The possible function of these enzymes in the protection nitrogenase from oxygen damage is discussed.Abbreviation SOD superoxide dismutase  相似文献   

13.
Azotobacter vinelandii was grown at constant growth rate in a chemostat with different molar ratios of sucrose to ammonium (C/N) in the influent media. Both compounds were consumed at essentially the same ratios as were present in the influent media. At low (C/N)-ratios, the cultures were ammonium-limited. At increased (C/N)-ratio ammonium-assimilating cultures additionally began to fix dinitrogen. The (C/N)-ratio at which nitrogenase activity became measurable, increased when the ambient oxygen concentration was increased. Immunoblotting revealed the appearance of nitrogenase proteins when the activity became detectable. Nitrogenase activity as determined either by acetylene reduction or by total nitrogen fixation gave constant relative activities of 1:3.8 (mol of N2 fixed per mol of acetylene reduced) under all sets of conditions used in this investigation. In spite of the oxygen dependent variation of the (C/N)-ratio, nitrogenase became active when the ammonium supply was less than about 14 nmol of ammonium per g of protein. This suggests that oxygen was not directly involved in the onset of dinitrogen fixation.  相似文献   

14.
In cultures of Azotobacter vinelandii inoculated using washed cells (avoiding exhausted broth components) alginates of a higher molecular weight (1200 kDa) than those obtained in cultures conventionally inoculated (350 kDa), were produced. Also, when comparing conventionally inoculated cultures with those inoculated with washed-cells, the alginate lyase activity was delayed and the final polymer concentration decreased from 4.8 to 3.5 g l–1. This suggests that components in the exhausted inoculum broth play important regulatory roles in alginate biosynthesis and needs to be taken into account when describing polymer biosynthesis.  相似文献   

15.
Growth and alginate production by Azotobacter vinelandii DSM576 as a function of initial ammonium sulphate concentration (0.45–1.05 g l−1) and agitation speed (300–700 rpm) were studied in batch fermentations at controlled pH. The time course of growth, alginate production and substrate consumption and the effect of nitrogen concentration and agitation speed on kinetic parameters and on maximum alginate molecular weight (MW) was modelled using empirical equations. The kinetics of growth, alginate production and polymerization were deeply affected by agitation speed and, to a lesser extent, by inorganic nitrogen concentration. Average and maximum specific growth rate and maximum alginate MW all increased with agitation speed, and were higher at intermediate ammonium sulphate concentration. Maximum alginate MW (>250,000) was obtained at high agitation speed (600–700 rpm) and alginate depolymerization was limited or did not occur at all when the agitation speed was higher than 500 rpm, while at 400 rpm depolymerization significantly reduced the alginate. However, alginate yield was negatively affected by increasing agitation speed. A good compromise between alginate yield (>2 g l−1) and quality (MW>250,000) was obtained with agitation speed of 500–600 rpm and 0.75–0.90 g l−1 of ammonium sulphate. Journal of Industrial Microbiology & Biotechnology (2000) 25, 242–248. Received 23 February 2000/ Accepted in revised form 04 August 2000  相似文献   

16.
The influence of the growth conditions on the concentration of nitrogenase and on the nitrogenase activity, was studied in intact Azotobacter vinelandii cells. It was observed that whole cell nitrogenase activity could be enhanced in two ways. An increase of the growth rate of cells was accompanied by an increase in whole cell nitrogenase activity and by an increase in the concentration of nitrogenase in the cells. The molar ratio of Fe protein:MoFe protein was 1.47 +/- 0.17 and independent of the growth rate. Activity measurements in cell extracts showed that the catalytic activity of the nitrogenase proteins was independent of the growth rate of cells. The second way to increase whole cell nitrogenase activity was to expose cells to excess oxygen. Whole cells were exposed for 2.5 h to an enhanced oxygen-input rate. After this incubation nitrogenase activity was increased without an increase in protein concentration. It is calculated that the catalytic activity of the Fe protein in these cells was 6200 nmol C2H4 formed X min-1 X (mg Fe protein)-1. With these cells and with cells grown at a high growth rate, 50% of the whole cell activity is lost by preparing a cell-free extract. It will be demonstrated that this inactivation is partly caused by the activity measurements in vitro. When dithionite was replaced by flavodoxin as electron donor, a maximal catalytic activity of 4500 nmol C2H4 formed X min-1 X (mg Fe protein)-1 was measured in vitro for the Fe protein. The results are discussed in relation to the present model for nitrogenase catalysis.  相似文献   

17.
18.
Azotobacter vinelandii was grown in continuous culture at constant dilution rate and at different molar ratios of sucrose to ammonium (C/N) in the inflowing medium. The organisms used up essentially all of the carbon and fixed nitrogen sources. Therefore, the (C/N)-ratio in the influent was the same as the (C/N)-ratio of consumption. Starting close to unity, slight increases of the (C/N)-ratio resulted in increases of cellular respiration. Concomitantly, growth yield coefficients on sucrose decreased while the total biomass stayed constant. At there low (C/N)-ratios growth was limited by ammonium with a yield coefficient on ammonium of about 0.07 g protein per mmol of ammonium. Eventually, however, upon furhter increasing the (C/N)-ratio, respiration as well as the yield coefficient on sucrose approached constant values while the biomass levels increased linearly. This result indicated that a transition to sucrose-limited growth had occurred. The (C/N)-ratio, above which respiration and yield coefficients on sucrose approached constancy, increased when the cultures were grown at higher oxygen tension. When the oxygen tension was higher, and at the same (C/N)-ratios, respiratory values increased, and biomass levels as well as yield coefficients decreased. The data suggest control of respiration and thus of growth yield by the ratio of sucrose to ammonium consumed. These observations infer that commencement of dinitrogen fixation kept the internal (C/N)-ratio constant and consequently respiration as well as yield coefficients on sucrose were maintained.  相似文献   

19.
Chemolithotrophic ammonium- and nitrite-oxidizing bacteria are dependent on the presence of oxygen for the production of nitrite and nitrate, respectively. In oxygen-limited environments, they have to compete with each other as well as with other organotrophic bacteria for the available oxygen. The outcome of the competition will be determined by their specific affinities for oxygen as well as by their population sizes. The effect of mixotrophic growth by the nitrite-oxidizing Nitrobacter hamburgensis on the competition for limiting amounts of oxygen was studied in mixed continuous culture experiments with the ammonium-oxidizing Nitrosomonas europaea at different levels of oxygen concentrations.The specific affinity for oxygen of N. europaea was in general higher than of N. hamburgensis. In transient state experiments, when oxic conditions were switched to anoxic, N. hamburgensis was washed out and nitrite accumulated. However, grown at low oxygen concentration, the specific affinity for oxygen of N. hamburgensis increased and became as great as that of N. europaea. Due to its larger population size, the nitrite-oxidizing bacterium became the better competitor for oxygen and ammonium accumulated in the fermentor. It is suggested that continuously oxygen-limited environments present a suitable ecological niche for the nitrite-oxidizing N. hamburgensis.  相似文献   

20.
E M Barnes  Jr 《Journal of bacteriology》1980,143(2):1086-1089
Addition of ionophores to resting aerobic cultures of Azotobacter vinelandii OP resulted in 45Ca2+ uptake (Km = 60 microM Ca2+; Vmax 1.1 nmol/min per mg of cell protein) which was inhibited by cations (La3+ greater than Mn2+ greater than Sr2+ greater Ba2+). The rate of Ca2+ entry correlated with the magnitude of a transmembrane proton gradient (inside acid) which developed in the respective order: valinomycin less than tetrachlorosalicylanilide less than nigericin less than gramicidin D less than tetrachlorosalicylanilide plus valinomycin. A process of calcium-proton exchange (antiport) is responsible for calcium accumulation under these conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号