首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The immunogenicity of a plasmid DNA expression vector encoding both Gag and envelope (Env), which produced human immunodeficiency virus (HIV) type 1 virus-like particles (VLP), was compared to vectors expressing Gag and Env individually, which presented the same gene products as polypeptides. Vaccination with plasmids that generated VLP showed cellular immunity comparable to that of Gag and cell-mediated or humoral responses similar to those of Env as immunization with separate vectors. These data suggest that DNA vaccines encoding separated HIV polypeptides generate immune responses similar to those generated by viral particles.  相似文献   

2.
Although the envelope gene of human immunodeficiency virus type 1 shows considerable strain variability, cysteine residues of the envelope protein are strongly conserved, suggesting that they are important to the envelope structure. We constructed and analyzed mutants of a biologically active molecular clone of human immunodeficiency virus type 1 in which different cysteines were replaced by other amino acids in order to determine their functional importance. Substitution of cysteines 296 and 331, on either side of a region recognized by type-specific neutralizing antibodies, or on either side (residues 418 and 445) of a region important for CD4 binding, resulted in noninfectious mutants. These mutants were blocked early in the viral life cycle. Their gp160 envelope precursor polypeptides were poorly cleaved, and CD4 binding was also strongly impaired. Similar substitutions in the first variable region (residue 131) or between the first and second variable regions (residue 196) also gave noninfectious mutant virus, but here the block was late in the virus life cycle; these mutants were defective for syncytium formation. Substitution of cys386, between the neutralization and CD4 binding regions, resulted in a virus which retained infectivity but which spread much more slowly than the wild type. As with the cys131 and cys196 mutants, the cys386 mutant appeared to be defective in syncytium formation. These results show that all seven of the tested cysteines are vital for envelope function and suggest that this is likely true for all envelope cysteines. The results further show that regions important for CD4 binding, proteolytic cleavage recognition, and syncytium formation are all multiple and distributed over a relatively large part of the gp120 and therefore are likely dependent on protein tertiary structure.  相似文献   

3.
K P Samuel  A Seth  M Zweig  S D Showalter  T S Papas 《Gene》1988,64(1):121-134
Nine envelope (Env) polypeptides, encoding different regions of HIV gp120 and gp41 Env proteins, and accounting for approx. 96% of the entire Env precursor glycoprotein complex (gp160) were expressed in Escherichia coli at levels ranging from approx. 2 to 20% of total cellular protein. The recombinant polypeptides were produced either as hybrid products fused to the cII gene fragment of the lambda vector or in an unfused form without interfering cII products. Partially purified protein fractions of each polypeptide were characterized serologically by Western-blot analysis against a panel of well characterized human immunodeficiency virus (HIV)-positive human reference sera. Most of the Env polypeptides were highly immunoreactive with anti-gp120/gp41 antibodies present in the sera of patients with acquired immunodeficiency syndrome (AIDS) and AIDS-related diseases, but the patterns of reactivity were different. These results demonstrate that some of the antigenic determinants residing on the viral gp160 complex are retained on the surfaces of the recombinant Env polypeptides, and suggest that these sites are differentially immunogenic. These results are therefore interpreted in the context of an ongoing process towards using bacterially expressed HIV Env polypeptides to help define biological and structural epitopes to aid in the development of more sensitive diagnostic and therapeutic reagents in the fight against AIDS.  相似文献   

4.
We examined chemokine receptors for the ability to facilitate the infection of CD4-expressing cells by viruses containing the envelope glycoproteins of a pathogenic simian immunodeficiency virus, SIVmac239. Expression of either human or simian C-C chemokine receptor CCR5 allowed the SIVmac239 envelope glycoproteins to mediate virus entry and cell-to-cell fusion. Thus, distantly related immunodeficiency viruses such as SIV and the primary human immunodeficiency virus type 1 isolates can utilize CCR5 as an entry cofactor.  相似文献   

5.
The human immunodeficiency virus envelope glycoproteins function as trimers on the viral surface, where they are targeted by neutralizing antibodies. Different monoclonal antibodies neutralize human immunodeficiency virus type 1 (HIV-1) infectivity by binding to structurally and functionally distinct moieties on the envelope glycoprotein trimer. By measuring antibody neutralization of viruses with mixtures of neutralization-sensitive and neutralization-resistant envelope glycoproteins, we demonstrate that the HIV-1 envelope glycoprotein trimer is inactivated by the binding of a single antibody molecule. Virus neutralization requires essentially all of the functional trimers to be occupied by at least one antibody. This model applies to antibodies differing in neutralizing potency and to virus isolates with various neutralization sensitivities. Understanding these requirements for HIV-1 neutralization by antibodies will assist in establishing goals for an effective AIDS vaccine.  相似文献   

6.
Four glycoproteins with apparent molecular weights of 300,000, 140,000, 125,000, and 36,000 (gp300, gp140, gp125, and gp36) were detectable in human immunodeficiency virus type 2 (HIV-2)-infected cells. gp125 and gp36 are the external and transmembrane components, respectively, of the envelope glycoproteins of HIV-2 mature virions. gp300 and gp140 are only detectable in virus-infected cells. They have identical isoelectric points, suggesting that gp300 might be a dimeric form of the immature precursor, gp140. The purified gp300 can be dissociated in a slightly acidic buffer to give rise to monomers of 140,000 molecular weight. Such dissociated monomers and the purified gp140 showed identical patterns of polypeptides after partial proteolysis with Staphylococcus aureus V8 protease. Pulse-chase experiments indicated that gp300 is formed after synthesis of gp140 and before the detection of the mature external envelope glycoprotein, gp125. These results were confirmed by using various inhibitors of glycosylation and inhibitors of trimming enzymes. Dimer formation of the envelope glycoprotein precursor was also observed in cells infected with simian immunodeficiency virus (SIV), a virus closely related to HIV-2. On the other hand, the envelope glycoprotein precursor of HIV-1 did not form a dimer during its processing. Therefore, dimer formation seems to be a specific property of HIV-2 and SIV envelope gene expression. Such transient dimerization of the glycoprotein precursor might be required for its efficient transport to the Golgi apparatus and for its processing.  相似文献   

7.
Growth of macaque simian immunodeficiency virus (SIVmac) in certain cloned human T-cell lines, such as HUT.78, selects for isolates containing a premature stop codon within the cytoplasmic domain of the transmembrane envelope glycoprotein. In contrast, propagation of virus in macaques or in their cultured T cells favors replication of virus containing the full-length envelope glycoprotein. To elucidate the causes of this phenomenon, we used a human immunodeficiency virus pseudotyping system to assess the effects on infectivity of the cytoplasmic domains of envelope glycoproteins obtained from SIVmac1A11 and SIVmac239. These envelopes contain truncated and full-length cytoplasmic domains, respectively. By analyzing human immunodeficiency virus particles containing selectable genes pseudotyped with each glycoprotein or with chimeric derivatives, we found that truncation of the cytoplasmic domain resulted in a significant advantage in viral entry into HUT.78 T cells and CD4+ U87.MG glial cells. Truncation of the cytoplasmic domain significantly enhanced both envelope density on particles and envelope-mediated cell-to-cell fusion. It is likely that one or both of these effects contribute to the observed differences in infectivity and to the selection of virions with short cytoplasmic tails in human T cells.  相似文献   

8.
The envelope glycoproteins of human immunodeficiency virus type 1 (HIV-1) function as a homotrimer of gp120/gp41 heterodimers to support virus entry. During the process of virus entry, an individual HIV-1 envelope glycoprotein trimer binds the cellular receptors CD4 and CCR5/CXCR4 and mediates the fusion of the viral and the target cellular membranes. By studying the function of heterotrimers between wild-type and nonfunctional mutant envelope glycoproteins, we found that two wild-type subunits within an envelope glycoprotein trimer are required to support virus entry. Complementation between HIV-1 envelope glycoprotein mutants defective in different functions to allow virus entry was not evident. These results assist our understanding of the mechanisms whereby the HIV-1 envelope glycoproteins mediate virus entry and membrane fusion and guide attempts to inhibit these processes.  相似文献   

9.
W R Lee  X F Yu  W J Syu  M Essex    T H Lee 《Journal of virology》1992,66(3):1799-1803
Amino acid substitutions were introduced into four conserved N-linked glycosylation sites of the human immunodeficiency virus type 1 envelope transmembrane glycoprotein, gp41, to alter the canonical N-linked glycosylation sequences. One altered site produced a severe impairment of viral infectivity, which raises the possibility that N-linked sugars at this site may have an important role in the human immunodeficiency virus type 1 life cycle.  相似文献   

10.
In order to develop a human immunodeficiency virus type 1 vaccine with global efficacy, it is important to evaluate the virus populations that are transmitted to individuals living in high-incidence areas. To determine the nature of the human immunodeficiency virus type 1 population transmitted to women during heterosexual contact, we examined the diversity of the proviral envelope gene in infected cells in both genital secretions and peripheral blood from six recently seroconverted Kenyan women. Heterogeneous virus populations were present in cervical secretions and/or peripheral blood shortly after seroconversion for five of six infected individuals, and tissue-specific variants were identified in several cases.  相似文献   

11.
12.
Serum neutralizing antibodies against the human immunodeficiency virus were frequently detected in infected individuals, and low or absent serum neutralizing titers correlated with poor prognosis. Multiple diverse human immunodeficiency virus isolates were found to exhibit similar susceptibility to neutralization by a panel of human seropositive sera, suggesting that neutralizing antibodies are largely directed against conserved viral domains. Furthermore, utilizing antisera raised against a library of synthetic env peptides, four regions which are important in the neutralization process have been identified within both human immunodeficiency virus envelope glycoproteins (gp41 and gp120). Three of these are in conserved domains and should be considered for inclusion in a candidate vaccine.  相似文献   

13.
DC-SIGN, a specific C-type lectin expressed on dendritic cells, binds and transmits multiple strains of primate immunodeficiency viruses to susceptible cells. Here, we report that human DC-SIGN also captures feline immunodeficiency virus via high-affinity (1 nM), Ca(2+)-dependent, D-mannose-inhibited binding to the major envelope glycoprotein, gp95.  相似文献   

14.
A recombinant adenovirus was constructed by inserting the human immunodeficiency virus type 1 (HIV-1) envelope gene downstream from the early region 3 (E3) promoter of adenovirus type 5 (Ad5), replacing the coding sequences of E3. The recombinant virus replicated as efficiently as the parent virus in all cell lines tested. Human cells infected with the recombinant virus synthesized the HIV-1 envelope precursor gp160, which was efficiently processed to the envelope glycoproteins gp120 and gp41. A human T-lymphoblast line (Molt-4) infected with the recombinant virus expressed HIV-1 envelope glycoproteins on the cell surface, leading to syncytium formation. The envelope gene was expressed from the E3 promoter at early times after infection and at late times from the major late promoter. When cotton rats were infected with the recombinant virus, antibodies against the HIV-1 envelope glycoproteins could be expressed in an immunoreactive form by the recombinant adenovirus, further illustrating the usefulness of adenoviruses as expression vectors.  相似文献   

15.
Recombinant native human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins gp160 and gp120 (residues 1 to 511) expressed in insect cells quantitatively adsorbed the group-specific neutralizing antibodies found in human sera. However, these antibodies were not adsorbed by envelope fragment 1 to 471 or 472 to 857 or by both fragments sequentially, even though together they add up to the full-length gp160 sequence. A hybrid envelope glycoprotein was constructed with residues 342 to 511 of the HIV-1 sequence and residues 1 to 399 of the simian immunodeficiency virus type 1 sequence to vary the HIV-1 sequence while preserving its conformation. This hybrid glycoprotein quantitatively adsorbed human neutralizing antibodies, while native simian immunodeficiency virus type 1 envelope glycoprotein did not. These results identify a new neutralizing epitope that depends on conformation and maps to residues 342 to 511 of gp120. It overlaps the extended CD4-binding site but is distinct from the V3 loop described previously (K. Javaherian et al., Proc. Natl. Acad. Sci. USA 86:6768-6772, 1989; J. R. Rusche et al., Proc. Natl. Acad. Sci. USA 85:3198-3202). Since it is conserved among diverse HIV-1 isolates, this new epitope may be a suitable target for future vaccine development.  相似文献   

16.
The charged amino acids near or within the membrane-spanning region of the human immunodeficiency virus type 1 gp41 envelope glycoprotein were altered. Two mutants were defective for syncytium formation and virus replication even though levels of envelope glycoproteins on the cell or virion surface and CD4 binding were comparable to those of the wild-type proteins. Thus, in addition to anchoring the envelope glycoproteins, sequences proximal to the membrane-spanning gp41 region are important for the membrane fusion process.  相似文献   

17.
In established T-cell lines, the membrane-fusing capacity of the human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins mediates cytopathic effects, both syncytium formation and single-cell lysis. Furthermore, changes in the HIV-1 envelope glycoproteins are responsible for the increased CD4(+) T-cell-depleting ability observed in infected monkeys upon in vivo passage of simian-human immunodeficiency virus (SHIV) chimeras. In this study, a panel of SHIV envelope glycoproteins and their mutant counterparts defective in membrane-fusing capacity were expressed in primary human CD4(+) T cells. Compared with controls, all of the functional HIV-1 envelope glycoproteins induced cell death in primary CD4(+) T-cell cultures, whereas the membrane fusion-defective mutants did not. Death occurred almost exclusively in envelope glycoprotein-expressing cells and not in bystander cells. Under standard culture conditions, most dying cells underwent lysis as single cells. When the cells were cultured at high density to promote syncytium formation, the envelope glycoproteins of the passaged, pathogenic SHIVs induced more syncytia than those of the respective parental SHIV. These results demonstrate that the HIV-1 envelope glycoproteins induce the death of primary CD4(+) T lymphocytes by membrane fusion-dependent processes.  相似文献   

18.
The envelope genes of six viruses derived from a single sampling from an individual chronically infected with human immunodeficiency virus type 1 (RJS-4) have been analyzed. Here we present the nucleotide and predicted amino acid sequences of these variants and show a correlation between biological properties and disturbance of the envelope reading frame.  相似文献   

19.
The utility of the simian immunodeficiency virus of macaques (SIVmac) model of AIDS has been limited by the genetic divergence of the envelope glycoproteins of human immunodeficiency virus type 1 (HIV-1) and the SIVs. To develop a better AIDS animal model, we have been exploring the infection of rhesus monkeys with chimeric simian/human immunodeficiency viruses (SHIVs) composed of SIVmac239 expressing HIV-1 env and the associated auxiliary HIV-1 genes tat, vpu, and rev. SHIV-89.6, constructed with the HIV-1 env of a cytopathic, macrophage-tropic clone of a patient isolate of HIV-1 (89.6), was previously shown to replicate to a high degree in monkeys during primary infection. However, pathogenic consequences of chronic infection were not evident. We now show that after two serial in vivo passages by intravenous blood inoculation of naive rhesus monkeys, this SHIV (SHIV-89.6P) induced CD4 lymphopenia and an AIDS-like disease with wasting and opportunistic infections. Genetic and serologic evaluation indicated that the reisolated SHIV-89.6P expressed envelope glycoproteins that resembled those of HIV-1. When inoculated into naive rhesus monkeys, SHIV-89.6P caused persistent infection and CD4 lymphopenia. This chimeric virus expressing patient isolate HIV-1 envelope glycoproteins will be valuable as a challenge virus for evaluating HIV-1 envelope-based vaccines and for exploring the genetic determinants of HIV-1 pathogenicity.  相似文献   

20.
A preparative method for isolating pure viral envelopes from a type-C RNA tumor virus, Rauscher murine leukemia virus, is described. Fractionation of virions of Rauscher murine leukemia virus was studied after disruption of the virions with the detergents sodium dodecyl sulfate of Nonidet P-40 in combination with ether. Fractionation was performed through flotation in a discontinuous sucrose gradient and, as appeared from electron microscopic examination, a pure viral envelope fraction was obtained in this way. By use of sensitive competition radioimmunoassays or sodium dodecyl sulfate-polyacrylamide gel electrophoresis after immunoprecipitation with polyvalent and monospecific antisera directed against Rauscher murine leukemia virus proteins, the amount of the gag and env gene-encoded structural polypeptides in the virions and the isolated envelope fraction was compared. The predominant viral structural polypeptides in the purified envelope fraction were the env gene-encoded polypeptides gp70, p15(E), and p12(E), whereas, except for p15, there was only a relatively small amount of the gag gene-encoded structural polypeptides in this fraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号