首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A semi-purified fraction obtained from P388 D1 cell line conditioned medium (P388 D1 CM) which contains Interleukin-1 (IL-1) and Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) stimulates murine thymocyte proliferation both in the absence and the presence of a suboptimal dose of phytohemagglutinin (PHA). Because this effect on thymocyte proliferation is always larger than that obtained with optimal concentrations of pure IL-1, we have investigated the possible involvement of GM-CSF in this semi-purified fraction mediated-thymocyte proliferation. We here show that the maximal level of thymocyte proliferation induced by the semi-purified fraction is comparable to that obtained by the co-addition of recombinant GM-CSF and IL-1. In addition, although GM-CSF alone induces no significant thymocyte proliferation, the presence of an anti-GM-CSF antiserum partially blocks the thymocyte proliferation induced by the semi-purified fraction. Thus, the capacity of the semi-purified fraction of P388 D1 to stimulate thymocyte proliferation appears to result from a synergistic action between GM-CSF and IL-1.  相似文献   

2.
In this study, the ability of recombinant human macrophage (M) and murine granulocyte-macrophage (GM) colony stimulating factor (CSF) to affect both basal and stimulated bone resorption in fetal rat long-bone organ cultures was assessed. It was found that M-CSF does not affect basal bone resorption or bone resorption stimulated by parathyroid hormone, recombinant human interleukin 1 beta, prostaglandin E2 (PGE2), and 1,25 dihydroxy vitamin D3. Specifically, M-CSF at concentrations as high as 30 nM (1 microgram/mL) did not modulate 45Ca release from fetal rat long bones stimulated by these agents. The addition of recombinant murine GM-CSF (at equal molar concentration to M-CSF) also did not affect bone resorption stimulated by parathyroid hormone and interleukin 1 beta. On the other hand, GM-CSF stimulated basal bone resorption over a 120-h period and augmented the resorption mediated by exogenous PGE2 over a 48-h incubation. In addition, GM-CSF was shown to stimulate production of endogenous PGE2 in cultures of bone rudiments. These effects on bone resorption were blocked by the addition of prostaglandin synthesis inhibitors and specific antibodies to murine GM-CSF. These data indicate that M-CSF does not act as a regulator of bone turnover, but GM-CSF may cause bone resorption by stimulating the synthesis of PGE2 in bone.  相似文献   

3.
Stromal cell lines derived from murine bone marrow support the growth of immature pre-B cells and produce cytokines that affect the growth and differentiation of other hematopoietic precursors. Conditioned medium (CM) from one such line (TC-1) stimulated marked proliferation of B cells previously activated by anti-Ig (anti-Ig blasts). Proliferation of anti-Ig blasts was not induced by purified cytokines known to be produced by TC-1 (CSF-1, GM-CSF, or G-CSF) or by IL-1, IL-2, IL-3, IL-4, IL-5, or IL-6. Furthermore, IL-2, IL-4, and IL-5, alone or in combination, failed to support proliferation or differentiation of anti-Ig blasts. TC-1 CM enhanced proliferation of B cells that were co-cultured with LPS, anti-Ig, or dextran sulfate; co-stimulation with anti-Ig was unaffected by the presence of monoclonal anti-IL-4. Proliferation of low, but not high, density B cells isolated from spleen was directly stimulated by TC-1 CM. These results suggest that bone marrow stromal cells produce a novel B cell stimulatory factor (BSF-TC) that induces proliferation of activated B cells.  相似文献   

4.
We show herein that lipopolysaccharides (LPS), in vitro, synergize with GM-CSF to increase histamine synthesis by murine bone marrow cells. LPS has no effect on its own and does not potentiate histamine synthesis promoted by IL-3, the only other cytokine sharing this biological activity with GM-CSF. Despite the fact that GM-CSF and LPS synergistically increase PGE2 levels, the potentiating effect of LPS does not require PGE2 that have been previously shown to enhance GM-CSF-induced histamine synthesis. We provide evidence that this effect of LPS on histamine production by bone marrow cells is mediated by the intracellular cAMP transduction signal. In addition, LPS and cAMP enhance GM-CSF-induced histidine decarboxylase activity, showing that both substances act on histamine synthesis. Contrary to in vitro results, LPS injection into mice induces an increase in both intracellular histamine and HDC activity in bone marrow cells. Our results support the conclusion that this effect is mediated by GM-CSF. In conclusion, LPS appears to be a powerful HDC inducer in hematopoietic organs because of its ability, on one hand, to induce circulating GM-CSF and, on the other hand, to potentiate GM-CSF induction of HDC.  相似文献   

5.
We have studied stromal cell function in naive or interleukin-1 (IL-1)-stimulated (100 pg/ml) long-term marrow cultures (LTC) from 12 normal donors and 21 patients with severe aplastic anemia (AA). Conditioned media (CM) from normal LTC contained levels of erythroid burst-promoting activity (BPA) and granulocyte/macrophage (GM) colony-stimulating activity (CSA) comparable to those previously described (Migliaccio et al., [1990] Blood, 75:305-312). The addition of IL-1 to these cultures increased the level of CSA and, specifically, of granulocyte colony-stimulating factor (G-CSF) released. Anti-GM-CSF antibody neutralized BPA and CSA in normal naive LTC CM but only the CSA in the CM from IL-1-stimulated LTC. Since the concentrations of GM-CSF, as detected with a specific immunoassay, did not increase after IL-1 treatment, these data suggest that IL-1-stimulated cultures contain an unidentified growth factor having BPA. CM from AA stromal cells contained levels of CSA comparable to those observed in normal stromal cell CM but had significantly lower levels of BPA. Neither anti-GM-CSF nor anti-IL-3 antibodies neutralized the BPA in AA stromal cell CM. This activity may be related to that found in the CM of IL-1-treated normal stromal cells. In nearly 50% of stromal cell cultures of AA patients, addition of IL-1 failed to increase the BPA, CSA, or G-CSF. The presence of an inhibitor in naive or IL-1-treated AA stromal cell CM was excluded by adding the CM to IL-3-stimulated cultures. These findings suggest that G-CSF and GM-CSF genes are differentially regulated in the marrow microenvironment. Furthermore, a marrow microenvironment, deficient in BPA production and, in some cases, unresponsive to IL-1 could contribute to marrow failure in some patients with AA.  相似文献   

6.
PGE(2) is an endogenously synthesized inflammatory mediator that is over-produced in chronic inflammatory disorders such as allergic asthma. In this study, we investigated the regulatory effects of PGE(2) on mast cell degranulation and the production of cytokines relevant to allergic disease. Murine bone marrow-derived mast cells (BMMC) were treated with PGE(2) alone or in the context of IgE-mediated activation. PGE(2) treatment alone specifically enhanced IL-6 production, and neither induced nor inhibited degranulation and the release of other mast cell cytokines, including IL-4, IL-10, IFN-gamma, and GM-CSF. IgE/Ag-mediated activation of BMMC induced the secretion of IL-4, IL-6, and GM-CSF, and concurrent PGE(2) stimulation synergistically increased mast cell degranulation and IL-6 and GM-CSF, but not IL-4, production. A similar potentiation of degranulation and IL-6 production by PGE(2), in the context of IgE-directed activation, was observed in the well-established IL-3-dependent murine mast cell line, MC/9. RT-PCR analysis of unstimulated MC/9 cells revealed the expression of EP(1), EP(3), and EP(4) PGE receptor subtypes, including a novel splice variant of the EP(1) receptor. Pharmacological studies using PGE receptor subtype-selective analogs showed that the potentiation of IgE/Ag-induced degranulation and IL-6 production by PGE(2) is mediated through EP(1) and/or EP(3) receptors. Our results suggest that PGE(2) may profoundly alter the nature of the mast cell degranulation and cytokine responses at sites of allergic inflammation through an EP(1)/EP(3)-dependent mechanism.  相似文献   

7.
PG are known to inhibit T cell proliferation, at least in part by suppressing IL-2 production, but effects of PG on the production of other lymphokines have not been well studied. We have found that PGE2 and PGE1, but not PGF2 alpha, inhibit both proliferation and production of granulocyte-macrophage (GM)-CSF by murine TH clones stimulated with Ag or anti-CD3 antibody. Thus, signals generated via the Ag receptor:CD3 complex were inhibited by PGE. Most interesting, however, was the finding that PGE2 and PGE1 could act synergistically with IL-2 for the induction of GM-CSF in some TH1 clones. Dependence on PGE2 for this response was not found in all clones, as some TH1 cells could produce GM-CSF after IL-2 alone, and some cells did not produce GM-CSF even in the presence of PGE2 and IL-2. These observations indicate that there is a subset of TH1 cells receptive to a stimulating activity of PGE2 in the presence of IL-2. PGE2 is known to elevate cAMP levels in T cells. Therefore, we tested whether other agents known to increase cAMP, such as forskolin and cholera toxin, could act in conjunction with IL-2 to induce GM-CSF secretion. As was found with PGE2, these compounds also induced GM-CSF activity in the presence of IL-2, suggesting a critical role for cAMP in this process. Overall these data indicate that the requirements for activation of GM-CSF secretion vary among individual T cells. Most importantly they provide the first evidence that E-series PG are positive signals for lymphokine induction in certain T cells, whereas simultaneously acting as negative signals limiting proliferation. This result also suggests that treatment with anti-inflammatory drugs that decrease PGE2 concentrations may inhibit lymphokine secretion normally stimulated by this pathway.  相似文献   

8.
The interaction between interleukin IL-1 alpha and PGE2 on P388D1 cells has been investigated. Preincubation of murine macrophage-like cells, P388D1, with IL-1 alpha (0-73 pM) reduced the binding of PGE2 to these cells in a concentration-dependent manner. Scatchard analysis showed that IL-1 alpha decreased the PGE2 binding by lowering both the high and low affinity receptor binding capacities (from 0.31 +/- 0.02 to 0.12 +/- 0.01 fmol/10(6) cells for the high affinity receptor binding sites and from 2.41 +/- 0.12 to 1.51 +/- 0.21 fmol/10(6) cells for the low affinity receptor binding sites). However, the dissociation constants of the receptors of the IL-1 alpha-treated cells remained unchanged. Inhibition of PGE2 binding by IL-1 alpha did not involve changes in either protein phosphorylation or intracellular cyclic AMP levels. Our data clearly show that IL-1 alpha inhibits the binding of PGE2 to monocytes/macrophages and may thereby counter the immunosuppressive actions of PGE2.  相似文献   

9.
Zhou XY  Wang QR  Huang YH  Cheng LM  Tan MQ 《生理学报》2005,57(2):199-204
本文通过制备小鼠骨髓内皮细胞无血清条件培养液(serum-free murine bone marrow endothelial cell conditioned medium, mBMEC-CM),经超滤分为分子量>10 kDa组分和<10 kDa组分,分别观察mBMEC-CM原液及其组分以及外源性细胞因子对小鼠骨髓内皮细胞集落生成的影响。用Wright’S Giemsa染色计数内皮细胞集落及检测骨髓内皮细胞的vWF,通过[3H]- TdR掺入量,观察mBMEC-CM原液及其组分以及外源性细胞因子对小鼠骨髓内皮细胞增殖的影响,并用分子杂交方法检测内皮细胞表达的细胞因子,从几个方面来研究mBMEC-CM对骨髓内皮细胞增殖的作用。结果显示,骨髓内皮细胞vWF 检测阳性。mBMEC-CM原液及其分子量>10 kDa组分能刺激骨髓内皮细胞集落增殖,且能明显增加骨髓内皮细胞[3H]-TdR 掺入量;分子量<10 kDa组分对骨髓内皮细胞集落增殖无明显刺激作用,也不能增加骨髓内皮细胞[3H]-TdR掺入量。外源加入IL-6、IL-11、SCF、GM-CSF、VEGF、bFGF 6种细胞因子能明显刺激骨髓内皮细胞集落增殖,SCF、VEGF、bFGF能明显增加骨髓内皮细胞[3H]-TdR掺入量。Atlas array膜杂交实验显示骨髓内皮细胞内源性表达GM-CSF、SCF、MSP-1、endothelin-2、thymosin β10、connective tissue GF、PDGF-A chain、MIP-2α、PlGF、neutrophil activating protein ENA-78、INF-γ、IL-1、IL-6、IL-13、IL-11、inhibin-α等细胞因子的mRNA。上述结果提示,骨髓内皮细胞无血清条件培养液对骨髓内皮细胞增殖具有促进作用。  相似文献   

10.
11.
The effect of prostaglandin E2 on the gamma-interferon (IFN-gamma)-mediated induction of Ia expression and antigen-presenting activity in macrophage cell lines was studied. Using a lymphokine preparation obtained from the T-cell hybridoma FS7-20.6.18 (known to produce interferon) to induce the expression of Ia in P388D1 cells, the influence of PGE2 on this phenomenon was studied. Screening of the cell cultures by indirect immunofluorescence using an anti-I-Ad monoclonal antibody confirmed the inhibitory effect of PGE2 in the induction of I-Ad. However, the inhibition of the antigen-presenting ability of these cells, as measured by their capacity to stimulate interleukin 2 (IL-2) production by antigen-specific, I-region-restricted (Ag/I) T-cell hybridomas, was more difficult to demonstrate and was only evident when using low concentrations of Ia-inducing lymphokines or when using "low avidity" T-cell hybridomas. The latter were distinguished by the limited response (in the form of IL-2 production) that was observed when they were tested with P388D1 cells that had been induced with IFN-gamma. By contrast, PGE2 had profound inhibitory effects on the ability of T-cell hybridomas to secrete IL-2 in response to Ag/I or concanavalin A. These results suggest that although PGE2 inhibits the full induction of Ia on macrophages, it has little effect on the induction of Ag/I presentation by the same cells, probably because most T cells require relatively low levels of Ia on the surface of presenting cells. T-cell responses to Ag/I are inhibited, however, because of the effects of PGE2 on the T cells themselves.  相似文献   

12.
Among the major cytokines present in inflammatory lesions interleukin-1 (IL-1), tumor necrosis factor alpha (TNF alpha) and interleukin-6 (IL-6) share many biological activities. Since IL-1 alpha, IL-1 beta and TNF alpha have been previously demonstrated to play an important role in connective tissue destruction by stimulating the production of prostaglandin E2 (PGE2) and collagenase, these functions were investigated in the presence or absence of natural human IL-6 (nhIL-6) or recombinant human IL-6 (rhIL-6). IL-6 was found 1 degree to stimulate immunoglobulin A production by the CESS B cell line up to 19 fold without being affected by the presence of IL-1 beta and 2 degrees to stimulate murine thymocytes proliferation up to 2-4 fold, with an increase up to 60-fold in costimulation with either IL-1 alpha or beta. IL-6 alone, even at very high concentrations (up to 200 U/ml and 50 ng/ml), did not induce PGE2 production by fibroblasts and synovial cells. However, IL-1 alpha or beta induced PGE2 production by human dermal fibroblasts and by human synovial cells was inhibited (in 5/8 experiments) up to 62% by addition of IL-6. On the contrary in 2/4 experiments TNF alpha-induced PGE2 production was increased (approximately 2 fold) by the addition of IL-6. IL-1 and TNF alpha-induced collagenase production in synovial cells remained unchanged in the presence of IL-6.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The stimulation of granulocyte macrophage-colony stimulating factor (GM-CSF) by interleukin-1 (IL-1) has been shown to be counteracted in different mesenchymal cell systems by cyclic adenosine monophosphate (cAMP) agonists. The aim of this study was the evaluation of different cAMP agonists on GM-CSF expression in human bone marrow stromal cells. Incubation of secondary haematopoietic progenitor cell deprived human stromal cell cultures with IL-1 or TNF-alpha induced GM-CSF protein expression in culture supernatants and GM-CSF-mRNA in adherent stromal cells. The coincubation with 8-bromo-cAMP (8BrcAMP), a water soluble cAMP analogue, inhibited this GM-CSF stimulation at the protein and the mRNA level. This effect was dose dependent with a maximal inhibition of about 65% occurring at a 8BrcAMP concentration of 0.75 mM. In addition to 8BrcAMP, other cAMP agonists such as dibutyryl-cAMP, forskolin, pertussis toxin, or prostaglandin E2 (PGE2) had the same inhibitory effect on GM-CSF stimulation by IL-1. Coincubation with the cyclooxygenase inhibitor indomethacin had no significant influence on GM-CSF expression in stromal cells. Our results provide evidence that the previously described inhibitory effect of cAMP agonist PGE2 on haematopoietic progenitor cells in vivo is, at least in part, mediated by modulating the expression of GM-CSF in bone marrow stromal cells.  相似文献   

14.
We have recently demonstrated that transforming growth factor (TGF)-beta 1 and TGF-beta 2 are potent inhibitors of the growth and differentiation of murine and human hematopoietic cells. The proliferation of primary unfractionated murine bone marrow by interleukin-3 (IL-3) and human bone marrow by IL-3 or granulocyte/macrophage colony-stimulating factor (GM-CSF) was inhibited by TGF-beta 1 and TGF-beta 2, while the proliferation of murine bone marrow by GM-CSF or murine and human marrow with G-CSF was not inhibited. Mouse and human hematopoietic colony formation was differentially affected by TGF-beta 1. In particular, CFU-GM, CFU-GEMM, BFU-E, and HPP-CFC, the most immature colonies, were inhibited by TGF-beta 1, whereas the more differentiated unipotent CFU-G, CFU-M, and CFU-E were not affected. TGF-beta 1 inhibited IL-3-induced growth of murine leukemic cell lines within 24 h, after which the cells were still viable. Subsequent removal of the TGF-beta 1 results in the resumption of normal growth. TGF-beta 1 inhibited the growth of factor-dependent NFS-60 cells in a dose-dependent manner in response to IL-3, GM-CSF, G-CSF, CSF-1, IL-4, or IL-6. TGF-beta 1 inhibited the growth of a variety of murine and human myeloid leukemias, while erythroid and macrophage leukemias were insensitive. Lymphoid leukemias, whose normal cellular counterparts were markedly inhibited by TGF-beta, were also resistant to TGF-beta 1 inhibition. These leukemic cells have no detectable TGF-beta 1 receptors on their cell surface. Last, TGF-beta 1 directly inhibited the growth of isolated Thy-1-positive progenitor cells. Thus, TGF-beta may be an important modulator of normal and leukemic hematopoietic cell growth.  相似文献   

15.
The hemopoietic growth factor granulocyte-macrophage colony-stimulating factor, GM-CSF, specifically controls the production of granulocytes and macrophages. This report describes the binding of biologically-active 125I-labeled murine GM-CSF to a range of hemopoietic cells. Specific binding was restricted to murine cells and neither rat nor human bone marrow cells appeared to have surface receptors for 125I-labeled GM-CSF. 125I-Labeled GM-CSF only appeared to bind specifically to cells in the myelomonocytic lineage. The binding of 125I-labeled GM-CSF to both bone marrow cells and WEHI-3B(D+) was rapid (50% maximum binding was attained within 5 min at both 20 degrees C and 37 degrees C). Unlabeled GM-CSF was the only polypeptide hormone which completely inhibited the binding of 125I-labeled GM-CSF to bone marrow cells, however, multi-CSF (also called IL-3) and G-CSF partially reduced the binding of 125I-labeled GM-CSF to bone marrow cells. Interestingly, the binding of 125I-labeled GM-CSF to a myelomonocytic cell line, WEHI-3B(D+), was inhibited by unlabeled GM-CSF but not by multi-CSF or G-CSF. Scatchard analysis of the binding of 125I-labeled GM-CSF to WEHI-3B(D+) cells, bone marrow cells and peritoneal neutrophils indicated that there were two classes of binding sites: one of high affinity (Kd1 = 20 pM) and one of low affinity (Kd2 = 0.8-1.2 nM). Multi-CSF only inhibited the binding of 125I-labeled GM-CSF to the high affinity receptor on bone marrow cells: this inhibition appeared to be a result of down regulation or modification of the GM-CSF receptor.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
C Piquet-Pellorce  M Dy 《Life sciences》1991,48(25):2377-2382
Histamine synthesis in response to Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF) by murine hematopoietic cells is strikingly potentiated by prostaglandin E2 (PGE2). This synergy is mediated by an increase in intracellular adenosine 3':5'-cyclic monophosphate (cAMP), since: (a) exogeneous and endogeneous cAMP generated either by forskolin or IBMX potentiate GM-CSF-induced histamine synthesis, (b) the maximal potentiating effects of PGE2 and cAMP are not cumulative, and (c) GM-CSF together with PGE2 enhances intracellular cAMP content in a bone marrow population enriched for GM-CSF target cells. cAMP and PGE2 enhance histidine decarboxylase activity induced by GM-CSF showing that both factors act on histamine synthesis rather than on its release. Conversely, histamine synthesis promoted by Interleukin 3 (IL-3), the unique cytokine sharing this property with GM-CSF, is not modulated by PGE2 or cAMP, suggesting two distinct mechanisms for the induction of this biological activity in hematopoietic cells.  相似文献   

17.
Purified recombinant human (rhu) IL-1 alpha and IL-1 beta were evaluated for their effects on the proliferation and survival of granulocyte-macrophage (CFU-GM) and erythroid (BFU-E) progenitor cells from normal human bone marrow (BM). Using nonadherent low density T lymphocyte depleted (NALT-) BM cells cultured in the presence or absence of IL-1, CSF-deprivation studies demonstrated that IL-1 alpha or IL-1 beta by itself did not enhance the proliferation of CFU-GM or BFU-E. They did, however, promote the survival of progenitors responding to the delayed addition of media conditioned by the 5637 cell line (5637 conditioned medium), rhu GM-CSF and erythropoietin. The survival promoting effects of IL-1 alpha on CFU-GM and BFU-E were neutralized by anti-IL-1 alpha mAb added to the cultures. The survival promoting effect of IL-1 alpha did not appear to be mediated by CSF, because neither CSF nor erythroid burst promoting activity were detectable in cultures in which NALT- cells were incubated with rhuIL-1 alpha. In addition, suboptimal concentrations of rhu macrophage CSF (CSF-1), G-CSF, GM-CSF, and IL-3, which were just below the levels that would stimulate colony formation, did not enhance progenitor cell survival. Survival of CFU-GM and BFU-E in low density (LD) bone marrow cells did not decrease as drastically as that in NALT- BM cells, and exogenously added IL-1 did not enhance progenitor cell survival of CFU-GM and BFU-E in LD BM cells. However, addition of anti-IL-1 beta decreased survival of CFU-GM and BFU-E in LD BM cells. These results implicate IL-1 in the prolonged survival of human CFU-GM and BFU-E.  相似文献   

18.
Accessory cell (A-cell) function in a Con A response was analyzed. Irradiated P388D1 cells efficiently induced a proliferative response to Con A of T cells purified from spleen cells, whereas paraformaldehyde-fixed P388D1 cells failed to serve as A cells. Although IL-1 containing culture supernatant (SN) of a macrophage hybridoma induced the Con A response of the T-cell preparations, the depletion of Ia+ cells by the treatment with anti-Ia antibody and complement abrogated the response in the presence of IL-1. Fixed P388D1 cells and the hybridoma SN synergized in the reconstitution of the response. A 15,000-Da fraction of the hybridoma SN or human recombinant IL-1 alpha was able to substitute the hybridoma SN for the response. The reconstitution of the response by IL-1 and fixed P388D1 cells was inhibited by the addition of monoclonal anti-Ia antibody. These results indicate that IL-1 or fixed P388D1 cell does not exert a sufficient signal by itself and both of them are required for the reconstitution of a Con A response of highly purified T cells, and that Ia on fixed P388D1 cells play an important role.  相似文献   

19.
Human bone marrow stromal cells repond to stimulation by the monokines IL-1 and TNF by producing colony-stimulating factors such as GM-CSF and G-CSF. In this study we show that IL-1α and TNFα act synergistically to stimulate GM-CSF and G-CSF production by cultured marrow stromal cells. We further show that IL-1α and TNFα synergistically stimulate production of GM-CSF and G-CSF by a clonal stroma-derived cell strain. Although IL-1 and TNF share many of the same biological activities, we show that IL-1α and TNFα have an unequal ability to induce myeloid-CSF production by both cultures, with IL-1α being the more potent inducer. We found that induction by IL-1α and TNFα was independent of cell proliferation. The effect of IL-1α and TNFα on production of the two myeloid-CSFs by the clonal cells was significantly greater than the unfractionated passaged stromal cultures, having the greater effect on G-CSF production. The clonally derived stromal cells constitutively produced colony-stimulating activity, in particular GM-CSF, at levels easily detected by ELISA. These findings show that, in addition to the overlapping and additive activities of IL-1α and TNFα, they can interact synergistically. Our findings further suggest that a small subpopulation of stroma cells may be the major producer of G-CSF in the marrow microenvironment during immune response. © 1994 wiley-Liss, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号