首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
B Asbóth  L Polgár 《Biochemistry》1983,22(1):117-122
X-ray diffraction studies suggested that the tetrahedral intermediate formed during the catalysis by serine and thiol proteinases can be stabilized by hydrogen bonds from the protein to the oxyanion of the intermediate [cf. Kraut, J. (1977) Annu. Rev. Biochem. 46, 331-358; Drenth, J., Kalk, K.H., & Swen, H.M. (1976) Biochemistry 15, 3731-3738]. To obtain evidence in favor or against this hypothesis, we synthesized thiono substrates (the derivatives of N-benzoyl-glycine methyl ester and N-acetylphenylalanine ethyl ester) containing a sulfur in place of the carbonyl oxygen atom of the scissile ester bond. We anticipated that this relatively subtle structural change specifically directed to the oxyanion binding site should produce serious catalytic consequences owing to the different properties of oxygen and sulfur if transition-state stabilization in the oxyanion hole is indeed important. In fact, while in alkaline hydrolysis the chemical reactivities of oxygen esters and corresponding thiono esters proved to be similar, neither chymotrypsin nor subtilisin hydrolyzed the thiono esters at a measurable rate. This result substantiates the crucial role of the oxyanion binding site in serine proteinase catalysis. On the basis of the similar values of the binding constants found for oxygen esters and their thiono counterparts, it can be concluded that the substitution of sulfur for oxygen significantly influences transition state stabilization but not substrate binding. The thiol proteinases papain and chymopapain react with the oxygen and thiono esters of N-benzoylglycine at similar rates. Apparently, in these reactions the above stabilizing mechanism is absent or not important, which is a major mechanistic difference between the catalyses by serine and thiol proteinases.  相似文献   

2.
Endothiapepsin is derived from the fungus Endothia parasitica and is a member of the aspartic proteinase class of enzymes. This class of enzyme is comprised of two structurally similar lobes, each lobe contributing an aspartic acid residue to form a catalytic dyad that acts to cleave the substrate peptide bond. The three-dimensional structures of endothiapepsin bound to five transition state analogue inhibitors (H189, H256, CP-80,794, PD-129,541 and PD-130,328) have been solved at atomic resolution allowing full anisotropic modelling of each complex. The active sites of the five structures have been studied with a view to studying the catalytic mechanism of the aspartic proteinases by locating the active site protons by carboxyl bond length differences and electron density analysis. In the CP-80,794 structure there is excellent electron density for the hydrogen on the inhibitory statine hydroxyl group which forms a hydrogen bond with the inner oxygen of Asp32. The location of this proton has implications for the catalytic mechanism of the aspartic proteinases as it is consistent with the proposed mechanism in which Asp32 is the negatively charged aspartate. A number of short hydrogen bonds (approximately 2.6 A) with ESD values of around 0.01 A that may have a role in catalysis have been identified within the active site of each structure; the lengths of these bonds have been confirmed using NMR techniques. The possibility and implications of low barrier hydrogen bonds in the active site are considered.  相似文献   

3.
The three-dimensional structure of human uropepsin complexed with pepstatin has been modelled using human pepsin as a template. Uropepsin is an aspartic proteinase from the urine, produced in the form of pepsinogen A in the gastric mucosa. The structure is bilobal, consisting of two predominantly beta-sheet lobes which, as observed in other aspartic proteinases, are related by a pseudo twofold axis. A structural comparison between binary complexes of pepsin:pepstatin and uropepsin:pepstatin is discussed.  相似文献   

4.
5.
Based on available three-dimensional structures of enzyme-inhibitor complexes, the mechanism of the reaction catalysed by HIV protease is studied using molecular dynamics simulations with molecular mechanics and combined quantum-mechanics/molecular-mechanics potential energy functions. The results support the general acid/general base catalysis mechanism, with Asp25′ protonated in the enzyme-substrate complex. In the enzyme-substrate complex, the lytic water molecule binds at a position different from the positions of the hydroxyl groups in various aspartic protease-inhibitor complexes. The carboxyl groups at the active site also adopt a different orientation. However, when the lytic water molecule approaches the scissile peptide, the reaction centre changes gradually to a conformation close to that derived from X-ray diffraction studies of various enzyme-inhibitor complexes. The proton transfer processes can take place only after the lytic water molecule has approached the scissile peptide bond to a certain degree. Qualitatively, the free-energy barrier associated with the nucleophilic attack step, which takes place at physiological pH, is comparable with the acid or base-catalysed reactions of model systems. The structure of the tetrahedral intermediate resulting from the nucleophilic attack step also indicates a straightforward pathway of the next reaction step, i.e. the breaking of the C-N bond.  相似文献   

6.
Kumamolysin, a carboxyl proteinase from Bacillus novosp. MN-32, is characterized by its thermostability and insensitivity to aspartic proteinase inhibitors such as pepstatin, diazoacetyl-DL-norleucine methylester, and 1,2-epoxy-3-(p-nitro-phenoxy)propane. Here, its substrate specificity was elucidated using two series of synthetic chromogenic substrates: P(5)-P(4)-P(3)-P(2)-Phe*Nph (p-nitrophenylalanine: *cleavage site)-P(2)'-P(3)', in which the amino acid residues at the P(5)-P(2), P(2)' and P(3)' positions were systematically substituted. Among 74 substrates, kumamolysin was shown to hydrolyze Lys-Pro-Ile-Pro-Phe-Nph-Arg-Leu most effectively. The kinetic parameters of this peptide were K(m) = 41+/-5 microM, k(cat) = 176+/- 10 s(-1), and k(cat)/K(m) = 4.3+/-0.6 mM(-1) x s(-1). These systematic analyses revealed the following features: (i) Kumamolysin had a unique preference for the P(2) position. Kumamolysin preferentially hydrolyzed peptides having an Ala or Pro residue at the P(2) position; this was also observed for the pepstatin-insensitive carboxyl proteinase from Bacillus coagulans J-4 [J-4; Shibata et al. (1998) J. Biochem. 124, 642-647]. Other carboxyl proteinases, including Pseudomonas sp. 101 pepstatin-insensitive carboxyl proteinase (PCP) and Xanthomonas sp. T-22 pepstatin-insensitive carboxyl proteinase (XCP), preferred peptides having hydrophobic and bulky amino acid residue such as Leu at the P(2) position. (ii) Kumamolysin preferred such charged amino acid residues as Glu or Arg at the P(2)' position, suggesting that the S(2)' subsite of kumamolysin is occupied by hydrophilic residues, similar to that of PCP, XCP, and J-4. In general, the S(2)' subsite of pepstatin-sensitive carboxyl proteinases (aspartic proteinases) is hydrophobic in nature. Thus, the hydrophilic nature of the S(2)' subsite was confirmed to be a distinguishing feature of pepstatin-insensitive carboxyl proteinases from prokaryotes.  相似文献   

7.
The Arabidopsis thaliana constitutive disease resistance 1 (CDR1) gene product is an aspartic proteinase that has been implicated in disease resistance signaling (Xia, Y., Suzuki, H., Borevitz, J., Blount, J., Guo, Z., Patel, K., Dixon, R. A., and Lamb, C. (2004) EMBO J. 23, 980-988). This apoplastic enzyme is a member of the group of "atypical" plant aspartic proteinases. As for other enzymes of this subtype, CDR1 has remained elusive until recently as a result of its unusual properties and localization. Here we report on the heterologous expression and characterization of recombinant CDR1, which displays unique enzymatic properties among plant aspartic proteinases. The highly restricted specificity requirements, insensitivity toward the typical aspartic proteinase inhibitor pepstatin A, an unusually high optimal pH of 6.0-6.5, proteinase activity without irreversible prosegment removal, and dependence of catalytic activity on formation of a homo-dimer are some of the unusual properties observed for recombinant CDR1. These findings unveil a pattern of unprecedented functional complexity for Arabidopsis CDR1 and are consistent with a highly specific and regulated biological function.  相似文献   

8.
Han J  Burke JM 《Biochemistry》2005,44(21):7864-7870
We have used nucleobase substitution and kinetic analysis to test the hypothesis that hammerhead catalysis occurs by a general acid-base mechanism, in which nucleobases are directly involved in deprotonation of the attacking 2'-hydroxyl group and protonation of the 5'-oxygen that serves as the leaving group in the cleavage reaction. We demonstrate that simultaneous substitution of two important nucleobases, G8 and G12, with 2,6-diaminopurine shifts the pH optimum of the cleavage reaction from greater than 9.5 to approximately 6.8 in two different hammerhead constructs. Controls involving substitution with other nucleobases and combinations of nucleobases at G5, G8, and/or G12 do not show this behavior. The observed changes in the pH-rate behavior are consistent with a mechanism in which N1 protonation-deprotonation events of guanine or 2,6-diaminopurine at positions 8 and 12 are essential for catalysis. Further support for the participation of G8 and G12 comes from photochemical cross-linking experiments, which show that G8 and G12 can stack upon the two substrate nucleobases at the reactive linkage, G(or U)1.1 and C17 (Heckman, J. E., Lambert, D., and Burke, J. M. (2005) Photocrosslinking detects a compact active structure of the hammerhead ribozyme, Biochemistry 44, 4148-4156). Together, these results support a model in which the hammerhead undergoes a transient conformational change into a catalytically active structure, in which stacking of G8 and G12 upon the nucleobases spanning the cleavage site provides an appropriate architecture for general acid-base catalysis. The hammerhead and hairpin ribozymes may share similarities in the organization of their active sites and their catalytic mechanism.  相似文献   

9.
The X-ray structures of Aspergillus oryzae aspartic proteinase (AOAP) and its complex with inhibitor pepstatin have been determined at 1.9A resolution. AOAP was crystallized in an orthorhombic system with the space group P2(1)2(1)2(1) and cell dimensions of a=49.4A, b=79.4A, and c=93.6A. By the soaking of pepstatin, crystals are transformed into a monoclinic system with the space group C2 and cell dimensions of a=106.8A, b=38.6A, c=78.7A, and beta=120.3 degrees. The structures of AOAP and AOAP/pepstatin complex were refined to an R-factor of 0.177 (R(free)=0.213) and of 0.185 (0.221), respectively. AOAP has a crescent-shaped structure with two lobes (N-lobe and C-lobe) and the deep active site cleft is constructed between them. At the center of the active site cleft, two Asp residues (Asp33 and Asp214) form the active dyad with a hydrogen bonding solvent molecule between them. Pepstatin binds to the active site cleft via hydrogen bonds and hydrophobic interactions with the enzyme. The structures of AOAP and AOAP/pepstatin complex including interactions between the enzyme and pepstatin are very similar to those of other structure-solved aspartic proteinases and their complexes with pepstatin. Generally, aspartic proteinases cleave a peptide bond between hydrophobic amino acid residues, but AOAP can also recognize the Lys/Arg residue as well as hydrophobic amino acid residues, leading to the activation of trypsinogen and chymotrypsinogen. The X-ray structure of AOAP/pepstatin complex and preliminary modeling show two possible sites of recognition for the positively charged groups of Lys/Arg residues around the active site of AOAP.  相似文献   

10.
It is well known that the wild type Cu,Zn superoxide dismutase (holo SOD) catalyzes the conversion of superoxide anion to peroxide hydrogen and dioxygen. However, a new function of holo SOD, i.e., nucleolytic activity has been found [W. Jiang, T. Shen, Y. Han, Q. Pan, C. Liu, J. Biol. Inorg. Chem. 11 (2006) 835-848], which is linked to the incorporation of exogenous divalent metals into the enzyme-DNA complex. In this study, the roles of exogenous divalent metals in the nucleolytic activity were explored in detail by a series of biochemical experiments. Based on a non-equivalent multi-site binding model, affinity of a divalent metal for the enzyme-DNA complex was determined by absorption titration, indicating that the complex can provide at least a high and a low affinity site for the metal ion. These mean that the holo SOD may use a "two exogenous metal ion pathway" as a mechanism in which both metal ions are directly involved in the catalytic process of DNA cleavage. In addition, the pH versus DNA cleavage rate profiles can be fitted to two ionizing-group models, indicating the presence of a general acid and a general base in catalysis. A model that requires histidine residues, metal-bound water molecules and two hydrated metal ions to operate in concert could be used to interpret the catalysis of DNA hydrolysis, supported by the dependences of loss of the nucleolytic activity on time and on the concentration of the specific chemical modifier to the histidine residues on the enzyme.  相似文献   

11.
Crystal structure of human pepsin and its complex with pepstatin.   总被引:3,自引:3,他引:0       下载免费PDF全文
The three-dimensional crystal structure of human pepsin and that of its complex with pepstatin have been solved by X-ray crystallographic methods. The native pepsin structure has been refined with data collected to 2.2 A resolution to an R-factor of 19.7%. The pepsin:pepstatin structure has been refined with data to 2.0 A resolution to an R-factor of 18.5%. The hydrogen bonding interactions and the conformation adopted by pepstatin are very similar to those found in complexes of pepstatin with other aspartic proteinases. The enzyme undergoes a conformational change upon inhibitor binding to enclose the inhibitor more tightly. The analysis of the binding sites indicates that they form an extended tube without distinct binding pockets. By comparing the residues on the binding surface with those of the other human aspartic proteinases, it has been possible to rationalize some of the experimental data concerning the different specificities. At the S1 site, valine at position 120 in renin instead of isoleucine, as in the other enzymes, allows for binding of larger hydrophobic residues. The possibility of multiple conformations for the P2 residue makes the analysis of the S2 site difficult. However, it is possible to see that the specific interactions that renin makes with histidine at P2 would not be possible in the case of the other enzymes. At the S3 site, the smaller volume that is accessible in pepsin compared to the other enzymes is consistent with its preference for smaller residues at the P3 position.  相似文献   

12.
Mercury labeled pepstatin was used to demonstrate the site of a pepstatin sensitive hemoglobinase in paraformaldehyde fixed adult Schistosoma japonicum. Pepstatin was covalently attached to glutathione using dicyclohexylcarbodiimide followed by addition to methyl mercury chloride. Deposition of mercury was observed in lipid-like globules and autophagic vacuoles in the gastrodermis. Control studies were negative in all instances. These results complement previous cytochemical studies on the distribution of other acid hydrolases in the gastrodermis of schistosomes. It is hypothesized that this pepstatin sensitive enzyme probably belongs to the carboxyl class of proteinases.  相似文献   

13.
This is the first report that describes the inhibition mechanism of xylanase from Thermomonospora sp. by pepstatin A, a specific inhibitor toward aspartic proteases. The kinetic analysis revealed competitive inhibition of xylanase by pepstatin A with an IC50 value 3.6 +/- 0.5 microm. The progress curves were time-depended, consistent with a two-step slow tight binding inhibition. The inhibition followed a rapid equilibrium step to form a reversible enzyme-inhibitor complex (EI), which isomerizes to the second enzyme-inhibitor complex (EI*), which dissociated at a very slow rate. The rate constants determined for the isomerization of EI to EI* and the dissociation of EI* were 15 +/- 1 x 10(-5) and 3.0 +/- 1 x 10(-8) s(-1), respectively. The Ki value for the formation of EI complex was 1.5 +/- 0.5 microm, whereas the overall inhibition constant Ki* was 28.0 +/- 1 nm. The conformational changes induced in Xyl I by pepstatin A were monitored by fluorescence spectroscopy, and the rate constants derived were in agreement with the kinetic data. Thus, the conformational alterations were correlated to the isomerization of EI to EI*. Pepstatin A binds to the active site of the enzyme and disturbs the native interaction between the histidine and lysine, as demonstrated by the abolished isoindole fluorescence of o-phthalaldehyde-labeled xylanase. Our results revealed that the inactivation of xylanase is due to the interference in the electronic microenvironment and disruption of the hydrogen-bonding network between the essential histidine and other residues involved in catalysis, and a model depicting the probable interaction between pepstatin A with xylanase has been proposed.  相似文献   

14.
A novel type of cysteine proteinase inhibitor (SspC) has been recently recognized in Staphylococcus aureus (Massimi, I., Park, E., Rice, K., Muller-Esterl, W., Sauder, D.N., and McGavin, M.J. (2002) J Biol Chem 277: 41770-41777). In this paper we have identified homologous proteins encoded in the genome of S. aureus and other coagulase-negative Staphylococci. Collectively we refer to these proteins as staphostatins as they specifically inhibit cysteine proteinases (staphopains) from Staphylococcus spp. The primary structure of staphostatins seems to be unique, although they resemble cystatins in size (105-108 residues). Recombinant staphostatin A, a product of the scpB gene and staphostatin B (SspC) from S. aureus have been characterized in details. Similar to the cystatins, the staphostatins interact specifically with their target proteinases forming tight and stable non-covalent complexes, staphostatin A with staphopain A and staphostatin B with staphopain B. However, in contrast to the cystatins, each of which inhibits broad range of cathepsins, complex formation between staphostatin and staphopain appears to be exclusive, with no cross interaction observed. In addition, the activities of several tested cysteine proteinases of prokaryotic- and eukaryotic-origin were not affected by staphostatins. Such narrow specificity limited to staphopains is presumed to be required to protect staphylococcal cytoplasmic proteins from being degraded by prematurely activated/folded prostaphopains. This function is guaranteed through the unique co-expression of the secreted proteinase and the intracellular inhibitor from the same operon, and represents a unique mechanism of regulation of proteolytic activity in Gram-positive bacteria.  相似文献   

15.
Recycling of proteins from the Golgi compartment to the ER in yeast   总被引:32,自引:12,他引:20       下载免费PDF全文
In the yeast Saccharomyces cerevisiae, the carboxyl terminal sequence His-Asp-Glu-Leu (HDEL) has been shown to function as an ER retention sequence (Pelham, H. R. B., K. G. Hardwick, and M. J. Lewis. 1988. EMBO (Eur. Mol. Biol. Organ.) J. 7:1757-1762). To examine the mechanism of retention of soluble ER proteins in yeast, we have analyzed the expression of a preproalpha factor fusion protein, tagged at the carboxyl terminus with the HDEL sequence. We demonstrate that this fusion protein, expressed in vivo, accumulates intracellularly as a precursor containing both ER and Golgi-specific oligosaccharide modifications. The Golgi-specific carbohydrate modification, which occurs in a SEC18-dependent manner, consists of alpha 1-6 mannose linkages, with no detectable alpha 1-3 mannose additions, indicating that the transit of the HDEL-tagged fusion protein is confined to an early Golgi compartment. Results obtained from the fractionation of subcellular organelles from yeast expressing HDEL-tagged fusion proteins suggest that the Golgi-modified species are present in the ER. Overexpression of HDEL-tagged preproalpha factor results in the secretion of an endogenous HDEL-containing protein, demonstrating that the HDEL recognition system can be saturated. These results support the model in which the retention of these proteins in the ER is dependent on their receptor-mediated recycling from the Golgi complex back to the ER.  相似文献   

16.
A carboxyl proteinase was found in the culture filtrate of a Gram-negative bacterium. The optimum for the action of the purified enzyme was approx. pH 3 and its caseinolytic activity was not inhibited by carboxyl proteinase inhibitors, such as pepstatin, Streptomyces pepsin inhibitor and diazoacetyl-DL-norleucine methyl ester. 1,2-epoxy-3-(p-nitrophenoxy)propane modified the enzyme with concomitant loss of its enzyme activity. The enzymatic and physicochemical properties of the enzyme were compared with those of known pepstatin- and diazoacetyl-DL-norleucine methyl ester-insensitive carboxyl proteinases previously reported. To our knowledge, this is the first carboxyl proteinase isolated from bacteria.  相似文献   

17.
Allan Beveridge 《Proteins》1996,24(3):322-334
We have performed ab initio Hartree-Fock self-consistent field calculations on the active site of endothiapepsin. The active site was modeled as a formic acid/formate anion moiety (representing the catalytic aspartates, Asp-32 and -215) and a bound water molecule. Residues Gly-34, Ser-35, Gly-217, and Thr-218, which all form hydrogen bonds to the active site, were modeled using formamide and methanol molecules. The water molecule, which is generally believed to function as the attacking nucleophile in catalysis, was allowed to bind to the active site in four distinct configurations. The geometry of each configuration was optimized using two basis sets (4-31G and 4-31G*). The results indicate that in the native enzyme the nucleophilic water is bound in a catalytically inert configuration. However, by rotating the carboxyl group of Asp-32 by about 90° the water molecule can be reorientated to attack the scissile bond of the substrate. A model of the bound enzyme-substrate complex was constructed from the crystal structure of a difluorostatone inhibitor complexed with endothiapepsin. This model suggests that the substrate itself initiates the reorientation of the nucleophilic water immediately prior to catalysis by forcing the carboxyl group of Asp-32 to rotate. The theoretical results predict that the active site of endothiapepsin undergoes a large distortion during substrate binding and this observation has been used to explain some of the kinetics results which have been reported for mutant aspartic proteinases.  相似文献   

18.
The crystal structures of an aspartic proteinase from Trichoderma reesei (TrAsP) and of its complex with a competitive inhibitor, pepstatin A, were solved and refined to crystallographic R-factors of 17.9% (Rfree = 21.2%) at 1.70 Å resolution and 15.8% (Rfree = 19.2%) at 1.85 Å resolution, respectively. The three-dimensional structure of TrAsP is similar to structures of other members of the pepsin-like family of aspartic proteinases. Each molecule is folded in a predominantly β-sheet bilobal structure with the N-terminal and C-terminal domains of about the same size. Structural comparison of the native structure and the TrAsP-pepstatin complex reveals that the enzyme undergoes an induced-fit, rigid-body movement upon inhibitor binding, with the N-terminal and C-terminal lobes tightly enclosing the inhibitor. Upon recognition and binding of pepstatin A, amino acid residues of the enzyme active site form a number of short hydrogen bonds to the inhibitor that may play an important role in the mechanism of catalysis and inhibition. The structures of TrAsP were used as a template for performing statistical coupling analysis of the aspartic protease family. This approach permitted, for the first time, the identification of a network of structurally linked residues putatively mediating conformational changes relevant to the function of this family of enzymes. Statistical coupling analysis reveals coevolved continuous clusters of amino acid residues that extend from the active site into the hydrophobic cores of each of the two domains and include amino acid residues from the flap regions, highlighting the importance of these parts of the protein for its enzymatic activity.  相似文献   

19.
Mechanism and stereoelectronic effects in the lysozyme reaction   总被引:6,自引:0,他引:6  
Lysozyme occupies a special place in the history of enzymology as the first enzyme to have its three-dimensional crystal structure elucidated by Phillips and co-workers in 1965. The crystallography, and much biochemical work, revealed three factors likely to be important for the mechanism of action: catalysis by the carboxyl group of Glu-35, catalysis by the ionized carboxyl group of Asp-52, and the conformation of the bound polysaccharide substrate. The work of the last 20 years has defined likely roles for the catalytic groups, but discussion of the conformational question came to a head only very recently with the suggestion that the fundamental stereoelectronic requirements of the glycoside-cleavage reaction might be decisive. Recent work on all three interlinked factors are reviewed.  相似文献   

20.
Structure and function of plant aspartic proteinases.   总被引:6,自引:0,他引:6  
Aspartic proteinases of the A1 family are widely distributed among plant species and have been purified from a variety of tissues. They are most active at acidic pH, are specifically inhibited by pepstatin A and contain two aspartic residues indispensible for catalytic activity. The three-dimensional structure of two plant aspartic proteinases has been determined, sharing significant structural similarity with other known structures of mammalian aspartic proteinases. With a few exceptions, the majority of plant aspartic proteinases identified so far are synthesized with a prepro-domain and subsequently converted to mature two-chain enzymes. A characteristic feature of the majority of plant aspartic proteinase precursors is the presence of an extra protein domain of about 100 amino acids known as the plant-specific insert, which is highly similar both in sequence and structure to saposin-like proteins. This insert is usually removed during processing and is absent from the mature form of the enzyme. Its functions are still unclear but a role in the vacuolar targeting of the precursors has been proposed. The biological role of plant aspartic proteinases is also not completely established. Nevertheless, their involvement in protein processing or degradation under different conditions and in different stages of plant development suggests some functional specialization. Based on the recent findings on the diversity of A1 family members in Arabidopsis thaliana, new questions concerning novel structure-function relationships among plant aspartic proteinases are now starting to be addressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号