首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have measured the magnetic susceptibility in the temperature range 1.4–77°K of three derivatives of bovine superoxide dismutase in which Co2+ was substituted for Zn2+: (1) 2Co2+ — in which Co2+ binds to the normal Zn2+ site and the Cu2+ site is unoccupied, (2) 2Co2+2Cu2+ — in which the Zn2+ site is occupied by Co2+ and the copper sites contains Cu2+ and (3) 2Co2+2Cu+ — which is the reduced form of the second derivative. The 2Co2+ protein exhibits Curie paramagnetism indicating S′ = 12 and the zero-field splitting must be greater than ?20 cm?1. The same propeties have been observed with the 2Co2+2Cu+-protein. By contrast, the 2Co2+2Cu2+-derivative exhibits relatively little paramagnetism, some of which arises from non-specifically associated metal ions. The lower susceptibility is due to antiferromagnetic coupling between Co2+ and Cu2+, and the magnitude of the coupling constant is probably ?5 cm?1.  相似文献   

2.
The effects of eight divalent metal ions on fully neutralized poly(S-carboxyethyl-l-cysteine) have been studied by means of circular dichroism. Four ionic species (Cd2+, Cu2+, Zn2+ and Ni2+) effectively induce the β-form, while the other four species (Co2+, Ba2+, Ca2+ and Mg2+) are not effective. Specifically, Mg(ClO4)2 is ineffective, even at 1.86 m. The effect of Cu2+ ions on the polypeptide conformation is significant at pH values other than in the neural range. Comparison of the present results with previous ones from the lower side chain homologue, poly(S-carboxymethyl-l-cysteine), shows that Cd2+ and Zn2+ ions are more effetive but Co2+ ions are much less effective in the polypeptide studied here. Random coils of poly(S-carboxyethyl-l-cysteine) are more soluble while the β-form is less soluble compared with the respective conformations of the lower side-chain homologue.  相似文献   

3.
The effects of eight divalent metal ions on fully neutralized poly(S-carboxyethyl-l-cysteine) have been studied by means of circular dichroism. Four ionic species (Cd2+, Cu2+, Zn2+ and Ni2+) effectively induce the β-form, while the other four species (Co2+, Ba2+, Ca2+ and Mg2+) are not effective. Specifically, Mg(ClO4)2 is ineffective, even at 1.86 m. The effect of Cu2+ ions on the polypeptide conformation is significant at pH values other than in the neural range. Comparison of the present results with previous ones from the lower side chain homologue, poly(S-carboxymethyl-l-cysteine), shows that Cd2+ and Zn2+ ions are more effetive but Co2+ ions are much less effective in the polypeptide studied here. Random coils of poly(S-carboxyethyl-l-cysteine) are more soluble while the β-form is less soluble compared with the respective conformations of the lower side-chain homologue.  相似文献   

4.
The peptidases in clan MH are known as cocatalytic zinc peptidases that have two zinc ions in the active site, but their metal preference has not been rigorously investigated. In this study, the molecular basis for metal preference is provided from the structural and biochemical analyses. Kinetic studies of Pseudomonas aeruginosa aspartyl aminopeptidase (PaAP) which belongs to peptidase family M18 in clan MH revealed that its peptidase activity is dependent on Co2+ rather than Zn2+: the kcat (s−1) values of PaAP were 0.006, 5.10 and 0.43 in no-metal, Co2+, and Zn2+ conditions, respectively. Consistently, addition of low concentrations of Co2+ to PaAP previously saturated with Zn2+ greatly enhanced the enzymatic activity, suggesting that Co2+ may be the physiologically relevant cocatalytic metal ion of PaAP. The crystal structures of PaAP complexes with Co2+ or Zn2+ commonly showed two metal ions in the active site coordinated with three conserved residues and a bicarbonate ion in a tetragonal geometry. However, Co2+- and Zn2+-bound structures showed no noticeable alterations relevant to differential effects of metal species, except the relative orientation of Glu-265, a general base in the active site. The characterization of mutant PaAP revealed that the first metal binding site is primarily responsible for metal preference. Similar to PaAP, Streptococcus pneumonia glutamyl aminopeptidase (SpGP), belonging to aminopeptidase family M42 in clan MH, also showed requirement for Co2+ for maximum activity. These results proposed that clan MH peptidases might be a cocatalytic cobalt peptidase rather than a zinc-dependent peptidase.  相似文献   

5.
Introduction of iron in various catalytic systems has served a crucial function to significantly enhance the catalytic activity toward oxygen evolution reaction (OER), but the relationship between material properties and catalysis is still elusive. In this study, by regulating the distinctive geometric sites in spinel, Fe occupies the octahedral sites (Fe3+(Oh)) and confines Co to the tetrahedral site (Co2+(Td)), resulting in a strikingly high activity (ηj = 10 mA cm?2 = 229 mV and ηj = 100 mA cm?2 = 281 mV). Further enrichment of Fe ions would occupy the tetrahedral sites to decline the amount of Co2+(Td) and deteriorate the OER activity. It is also found that similar tafel slope and peak frequency in Bode plot of electrochemical impedance spectroscopy indicate that Co2+(Td) ions are primarily in charge of water oxidation catalytic center. By means of electrochemical techniques and in situ X‐ray absorption spectroscopy, it is proposed that Fe3+(Oh) ions mainly confine cobalt ions to the tetrahedral site to restrain the multipath transfer of cobalt ions during the dynamic structural transformation between spinel and oxyhydroxide, continuously activating the catalytic behavior of Co2+(Td) ions. This material‐related insight provides an indication for the design of highly efficient OER electrocatalysts.  相似文献   

6.
Inorganic ions have been used widely to investigate biophysical properties of high voltage-activated calcium channels (HVA: Cav1 and Cav2 families). In contrast, such information regarding low voltage-activated calcium channels (LVA: Cav3 family) is less documented. We have studied the blocking effect of Cd2+, Co2+ and Ni2+ on T-currents expressed by human Cav3 channels: Cav3.1, Cav3.2, and Cav3.3. With the use of the whole-cell configuration of the patch-clamp technique, we have recorded Ca2+ (2 mM) currents from HEK−293 cells stably expressing recombinant T-type channels. Cd2+ and Co2+ block was 2- to 3-fold more potent for Cav3.2 channels (EC50 = 65 and 122 μM, respectively) than for the other two LVA channel family members. Current-voltage relationships indicate that Co2+ and Ni2+ shift the voltage dependence of Cav3.1 and Cav3.3 channels activation to more positive potentials. Interestingly, block of those two Cav3 channels by Co2+ and Ni2+ was drastically increased at extreme negative voltages; in contrast, block due to Cd2+ was significantly decreased. This unblocking effect was slightly voltage-dependent. Tail-current analysis reveals a differential effect of Cd2+ on Cav3.3 channels, which can not close while the pore is occupied with this metal cation. The results suggest that metal cations affect differentially T-type channel activity by a mechanism involving the ionic radii of inorganic ions and structural characteristics of the channels pore.  相似文献   

7.
Investigations on photosynthesis have greatly benefited by the use of specific inhibitors that affect a specific site of inhibition on the electron-transport chain. We show here for the first time that cobalt (Co2+) ions can be used specifically to inactivate electron donation to the reaction centre of Photosystem (PS) II without affecting PS I reactions. This conclusion is based on the following observations: (1) addition of exogenous electron donors such as NH2OH does not relieve Co2+-induced inactivation of photoelectron transport or the lowering of steady-state chlorophyll a fluorescence yield; this suggests that the inhibition is beyond the NH2OH donation site and before the fluorescence quencher Q, i.e., on the reaction centre complex itself. (2) Washing of Co2+-pretreated chloroplasts with isolation buffer to remove Co2+ does not relieve Co2+-induced inhibition of Hill activity, suggesting that the Co2+ effect is irreversible. (3) Co2+ did not alter the PS I reactions. Thus, Co2+-treated chloroplasts can be used to study PS I functions free from PS II reactions in isolated chloroplasts.  相似文献   

8.
ZnuA is the periplasmic Zn2+-binding protein associated with the high-affinity ATP-binding cassette ZnuABC transporter from Escherichia coli. Although several structures of ZnuA and its homologs have been determined, details regarding metal ion stoichiometry, affinity, and specificity as well as the mechanism of metal uptake and transfer remain unclear. The crystal structures of E. coli ZnuA (Eco-ZnuA) in the apo, Zn2+-bound, and Co2+-bound forms have been determined. ZnZnuA binds at least two metal ions. The first, observed previously in other structures, is coordinated tetrahedrally by Glu59, His60, His143, and His207. Replacement of Zn2+ with Co2+ results in almost identical coordination geometry at this site. The second metal binding site involves His224 and several yet to be identified residues from the His-rich loop that is unique to Zn2+ periplasmic metal binding receptors. Electron paramagnetic resonance and X-ray absorption spectroscopic data on CoZnuA provide additional insight into possible residues involved in this second site. The second site is also detected by metal analysis and circular dichroism (CD) titrations. Eco-ZnuA binds Zn2+ (estimated K d < 20 nM), Co2+, Ni2+, Cu2+, Cu+, and Cd2+, but not Mn2+. Finally, conformational changes upon metal binding observed in the crystal structures together with fluorescence and CD data indicate that only Zn2+ substantially stabilizes ZnuA and might facilitate recognition of ZnuB and subsequent metal transfer. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
The Schiff base, non-symmetrical, compartmental ligand N-[5-(2-{[2-hydroxy-3-methoxy-phenyl-methylidene]-amino}-phenyl-sulfamoyl)-[1,3,4]thiadiazol-2-yl]-acetamide (H3L) has been prepared by condensation of the acetazolamide derivative N-[5-(2-amino-phenylsulfamoyl)-[1,3,4]thiadiazol-2-yl]-acetamide (3) with 2-hydroxy-3-methoxy-benzaldehyde. The complexation of H3L with cobalt(II) chloride in pyridine under aerobic conditions yielded [CoIII(HL)(py)2][CoII(py)Cl3] · CH3CH2OH (4). The single crystal X-ray structures of H3L and 4 are reported. In the mononuclear cation [CoIII(HL)(py)2]+ of 4 the octahedral cobalt(III) ion is bound at the inner, metal ion binding site, and the larger, empty, outer metal binding site is partly occupied by the hydrogen-bonded ethanol molecule of crystallisation.  相似文献   

10.
In this work we report the optical absorption spectra of three cobalt-substituted derivatives of hemocyanin (He) from Carcinus maenas, in the temperature range 300–20 K. The derivatives studied are the mononuclear (Co2+)-He with a single cobalt ion in the CuA site, the binuclear (Co2+)2-He and the binuclear mixed metal (Co2+-Cu1+)-He. At low temperature three main bands are clearly resolved; the temperature dependence of their zeroth, first and second moments sheds light on the stereodynamic properties in the surroundings of the chromophore. Within the limits of the reported analysis, in the binuclear derivatives the motions coupled to the chromophore appear to be essentially harmonic in the whole temperature range investigated; moreover the data are consistent with the presence of an exogenous ligand strongly bound to the two metal ions. For the mononuclear derivative an essentially harmonic behavior is evident only up to 200 K where the data are consistent with the presence of an exogenous ligand much less strongly bound, while at higher temperatures the behavior of the spectra indicates the onset of very large anharmonic contributions to motions, that plausibly involve the above exogenous ligand and, quite likely, the entire active site.Abbreviations He Hemocyanin - M0 zeroth moment - M1 first moment - M2 second moment - (Co2–)2-He binuclear bicobalt hemocyanin derivative - (Co2+)-He mononuclear monocobalt hemocyanin derivative - (Co2+-Cu1+)-He binuclear mixed metals hemocyanin derivative - LFT ligand field theory - CT charge transfer - EPR electronic paramagnetic resonance - XANES X-ray absorption near edge structure Correspondence to: L. Cordone  相似文献   

11.
Electrophysiological studies have established that the permeation of Ba2+ ions through the KcsA K+-channel is impeded by the presence of K+ ions in the external solution, while no effect is observed for external Na+ ions. This Ba2+ “lock-in” effect suggests that at least one of the external binding sites of the KcsA channel is thermodynamically selective for K+. We used molecular dynamics simulations to interpret these lock-in experiments in the context of the crystallographic structure of KcsA. Assuming that the Ba2+ is bound in site S2 in the dominant blocked state, we examine the conditions that could impede its translocation and cause the observed “lock-in” effect. Although the binding of a K+ ion to site S1 when site S2 is occupied by Ba2+ is prohibitively high in energy (>10 kcal/mol), binding to site S0 appears to be more plausible (ΔG > 4 kcal/mol). The 2D potential of mean force (PMF) for the simultaneous translocation of Ba2+ from site S2 to site S1 and of a K+ ion on the extracellular side shows a barrier that is consistent with the concept of external lock-in. The barrier opposing the movement of Ba2+ is very high when a cation is in site S0, and considerably smaller when the site is unoccupied. Furthermore, free energy perturbation calculations show that site S0 is selective for K+ by 1.8 kcal/mol when S2 is occupied by Ba2+. However, the same site S0 is nonselective when site S2 is occupied by K+, which shows that the presence of Ba2+ affects the selectivity of the pore. A theoretical framework within classical rate theory is presented to incorporate the concentration dependence of the external ions on the lock-in effect.  相似文献   

12.
To achieve a satisfactory removal efficiency of heavy metal ions from wastewater, silane-functionalized montmorillonite with abundant ligand-binding sites (-NH2) was synthesized as an efficient adsorbent. Ca-montmorillonite (Ca-Mt) was functionalized with 3-aminopropyl triethoxysilane (APTES) to obtain the APTES-Mt products (APTES1.0CEC-Mt, APTES2.0CEC-Mt, APTES3.0CEC-Mt, APTES4.0CEC-Mt) with enhanced adsorption capacity for Co2+. The physico-chemical properties of the synthesized adsorbents were characterized by spectroscopic and microscopic methods, and the results demonstrated that APTES was successfully intercalated into the gallery of Ca-Mt or grafted onto the surface of Ca-Mt through Si-O bonds. The effect of solution pH, ionic strength, temperature, initial concentrations and contact time on adsorption of Co2+ by APTES-Mt was evaluated. The results indicated that adsorption of Co2+ onto Ca-Mt, APTES1.0CEC-Mt and APTES2.0CEC-Mt can be considered to be a pseudo-second-order process. In contrast, adsorption of Co2+ onto APTES3.0CEC-Mt and APTES4.0CEC-Mt fitted well with the pseudo-first-order kinetics. The adsorption isotherms were described by the Langmuir model, and the maximum adsorption capacities of APTES1.0CEC-Mt, APTES2.0CEC-Mt, APTES3.0CEC-Mt and APTES4.0CEC-Mt were 25.1, 33.8, 61.6, and 61.9 mg·g-1, respectively. In addition, reaction temperature had no impact on the adsorption capacity, while both the pH and ionic strength significantly affected the adsorption process. A synergistic effect of ion exchange and coordination interactions on adsorption was observed, thereby leading to a significant enhancement of Co2+ adsorption by the composites. Thus, APTES-Mt could be a cost-effective and environmental-friendly adsorbent, with potential for treating Co2+-rich wastewater.  相似文献   

13.
  • 1.1. Alkaline p-nitrophenylphosphate phosphatase of Halobacterium halobiium, either purified or in crude extracts, was progressively inactivated by treatment with several metal chelators.
  • 2.2. The activity of treated crude extracts was fully restored in the presence of 25–50 μM Mn2+ or 1 mM Co2+, and partially restored in the presence of 1 mM Cd2+.
  • 3.3. Zn2+ ions, as well as other divalent cations tested, were without effect.
  • 4.4. In the presence of a saturating concentration of Mn2+, but not Co2+ or Cd2+, the activity of the metal-depleted enzyme reached values well over the native control activity.
  • 5.5. Activation of the metal-depleted enzyme by Mn2+ showed cooperative kinetics, whereas activation by Co2+ showed Lineweaver-Burk kinetics.
  • 6.6. The results suggest that the enzyme contains two different types of metal-binding sites: essential site(s), occupied by endogenous Mn2+ ions, and regulatory site(s), that can be occupied by exogenous Mn2+ with an activating effect.
  相似文献   

14.
Na‐ion batteries are promising for large‐scale energy storage applications, but few cathode materials can be practically used because of the significant difficulty in synthesizing an electrode material with superior comprehensive performance. Herein, an effective strategy based on synergetic contributions of rationally selected metal ions is applied to design layered oxides with excellent electrochemical performances. The power of this strategy is demonstrated by the superior properties of as‐obtained NaFe0.45Co0.5Mg0.05O2 with 139.9 mA h g?1 of reversible capacity, 3.1 V of average voltage, 96.6% of initial Coulombic efficiency, and 73.9 mA h g?1 of capacity at 10 C rate, which benefit from the synergetic effect of Fe3+ (high redox potential), Co3+ (good kinetics), and inactive Mg2+ with compatible radii (stabilizing structure). Moreover, it is clarified that the superior property is not the simple superposition of performance for layered oxides with single metal ions. With the assistance of density functional theory calculations, it is evidenced that the wide capacity range (>70%) of prismatic Na+‐occupied sites during sodiation/desodiation is responsible for its high rate performance. This rational strategy of designing high‐performance cathodes based on the synergetic effect of various metal ions might be a powerful step forward in the development of new Na‐ion‐insertion cathodes.  相似文献   

15.
The bceA J gene from the cystic fibrosis isolate Burkholderia cenocepacia J2315 encodes a 56-kDa bifunctional protein, with phosphomannose isomerase (PMI) and guanosine diphosphate (GDP)-mannose pyrophosphorylase (GMP) activities, a new member of the poorly characterised type II PMI class of proteins. Due to the lack of homology between the type II PMIs and the human PMI, this class of proteins are being regarded as interesting potential targets to develop new antimicrobials. The BceAJ protein conserves the four typical motifs of type II PMIs: the pyrophosphorylase signature, the GMP active site, the PMI active site and the zinc-binding motif. After overproduction of BceAJ by Escherichia coli as a histidine tag derivative, the protein was purified to homogeneity by affinity chromatography. The GMP activity is dependent on the presence of Mg2+ or Ca2+ as cofactors, while the PMI activity uses a broader range of divalent ions, in the order of activation Mg2+ > Ca2+ > Mn2+ > Co2+ > Ni2+. The kinetic parameters K m, V max and K cat/K m for the PMI and GMP activities were determined. Results suggest that the enzyme favours the formation of GDP-mannose instead of mannose catabolism, thus channelling precursors to the formation of glycoconjugates.  相似文献   

16.
Contributions of the active site metal to the stability of carbonic anhydrase (CA) were quantified by differential scanning calorimetry and complementary unfolding measurements of CA substituted with Co2+, Cd2+, Cu2+, Ni2+ and Mn2+. The metal ions stabilize the protein to different extent, with the highest stability provided by the native Zn2+. This additional stability does not correlate with the enthalpy of the three metal-imidazole (His) bonds at the active site or other properties of the metal ions (charge density, hydration enthalpy). However, DFT calculations reveal an energetic penalty associated with metal coordination at the active site, and the magnitude of this penalty correlates inversely with metal contributions to the stability of the protein. While the affinity of CA for metal ions generally reflects the Irving–Williams series, the additional thermal stability provided by metal ions is modulated by the rigid His3 coordination that is imposed at the protein site.  相似文献   

17.
The toxicity of heavy metals on photosystem 2 photochemistry, was investigated by monitoring Hill activity, fluorescence, and thermoluminescence properties of photosystem 2 (PS 2) in pea (Pisum sativum L. cv. Bombay) chloroplasts. In Co2+-, Ni2+- or Zn2+-treated chloroplasts 2,6-dichlorophenolindophenol-Hill activity was markedly inhibited. Addition of hydroxylamine which donates electrons close to PS 2 reaction center did not restore the PS 2 activity. Co2+-, Ni2+ or Zn2+ also inhibited PS 2 activity supported by hydroxylamine in tris (hydroxymethyl)aminomethane (Tris)-inactivated chloroplasts. These observations were confirmed by fluorescence transient measurements. This implies that the metal ions inhibit either the reaction center or the components of PS 2 acceptor side. Flash-induced thermoluminescence studies revealed that the S2Q?A charge recombination was insensitive to metal ion addition. The S2Q?B charge recombination, however, was inhibited with increase in the level of Co2+, Ni2+ or Zn2+. The observed sensitivity of S2?B charge recombination in comparison to the stability of S2Q?A recombination suggests that the metal ions inhibit at the level of secondary quinone electron acceptor. QB. We suggest that Co2+, Ni2+ or Zn2+ do not block the electron flow between the primary and secondary quinone electron acceptor, but possibly, directly modify QB site, leading to the loss of PS 2 activity.  相似文献   

18.
A new CoII/CoIII hexanuclear complex, [Co4IICo2III(dea)2(Hdea)4)(piv)4](ClO4)2·H2O 1, has been obtained by reacting cobalt(II) perchlorate, diethanolamine, and pivalic acid (H2dea = diethanolamine and piv = pivalato anion). The cobalt ions are held together by four μ3 and four μ2 alkoxo bridges as well as by four syn-syn carboxylato groups. The hexanuclear motif contains four Co(II) and two Co(III) ions. The {CoII4CoIII22-O)43-O)4} core can be described as a four face-sharing monovacant and bivacant distorted heterocubane units. The cobalt(III) ions are hexacoordinated. Two of the cobalt(II) are hexacoordinated, while the two others are pentacoordinated with a bipyramidal stereochemistry. The magnetic properties of 1 have been investigated in the temperature range 1.9-300 K. Compound 1 exhibits an overall antiferromagnetic behaviour with a ground singlet spin state.  相似文献   

19.
In light of the critical role of divalent metal ions in the chemistry of coenzyme NADH analogs, complexation of 1-benzyl-3-substituted(X)-1,4-dihydropyridines (1, X=CONH2; 2, X=CSNH2; 3, X=COOCH3; 4, X=COCH3) with divalent metal ions (Mg2+, Zn2+, and Co2+) in dry acetonitrile was studied spectroscopically and kinetically. Presence of the metal ions causes red-shift of absorption band of NADH analogs and the rate retardation for the reaction between NADH analogs and N-methylacridinium ion. Analysis of the spectroscopic and kinetic data indicates that the NADH analogs form 1 : 1 complexes with the metal ions. The decreasing order of the magnitude of the association constants, K, is 1 2 4 3 for a given metal ion, and Mg2+ Zn2+ > Co2+ for a given NADH analog. The results strongly suggest that the primary binding site for the metal ions is the carbonyl oxygen (or thiocarbonyl sulfur) of the 3-substituent and that the amide nitrogen atom of the 3-substituent of 1 and 2 also ligates the metal ions, forming a bidentate structure and providing extra stability to the complexes of 1 and 2. Inhibition of reaction between NADH analogs and N-methylacridinium ion by the metal ions is attributed to inaccessibility of N-methylacridinium ion to the NADH analogs complexed with metal ions due to electrostatic repulsion.  相似文献   

20.
An oxadiazole derivative 2 was prepared by condensation reaction through cyclization of semicarbazone in the presence of bromine; the structural confirmation was supported by 1H and 13C nuclear magnetic resonance (NMR) spectroscopy, Fourier transform-infrared spectroscopy, and liquid chromatography-mass spectrometry. Its sensing ability towards Ni2+ ion was examined showing a binding constant of 1.04 × 105 compared with other suitable metal cations (Ca2+, Co2+, Cr3+, Ag+, Pb2+, Fe3+, Mg2+, and K+) using ultraviolet–visible (UV–vis) and fluorescence spectroscopic studies. The minimum concentration of Ni2+ ions and limit of detection was found to be 9.4 μM. A job's plot gave the binding stoichiometry ratio of oxadiazole derivative 2 vs Ni2+ ions as 2:1. Furthermore, the intercalative binding mode of oxadiazole derivative 2 with calf thymus DNA was supported by ultraviolet–visible (UV–vis) and fluorescent light, viscosity, cyclic voltammetry, time-resolved fluorescence, and circular dichroism measurements. The molecular docking result gave the binding score for oxadiazole derivative 2 as −6.5 kcal/mol, which further confirmed the intercalative interaction. In addition, the antifungal activity of oxadiazole derivative 2 was also screened against several fungal strains (C. albicans, C. glabrata, and C. tropicalis) by broth dilution and disc diffusion methods. In antioxidant studies, the oxadiazole derivative 2 showed potential scavenging activity against 2,2-diphenyl-1-picrylhydrazyl and H2O2 free radicals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号