首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Historically, sauropods have been largely perceived as having vertical, ‘S’-curved necks which were hypothesised to allow them to feed from the canopy of trees. Within the past two decades, this popular perception has been questioned, resulting in a debate over neck posture. The osteological differences between sauropods with horizontal neck posture (Diplodocus), and less horizontally inclined necks (Brachiosaurus) suggest differing life and feeding styles. One differing vertebral feature between these polarised bauplans is the bifurcated neural spine. Regardless of the spine condition, sauropods with and without bifurcated spines have been reconstructed exhibiting the same neck posture. Corroborating histology and morphology in extant taxa highlights the presence of modified vertebral ligaments associated with bifurcated spines. Using these extant taxa to better understand the biomechanics of bifurcated spines, this study proposes alternative soft tissue reconstructions. Previous depictions had the bifurcation trough entirely open or harbouring pneumatic diverticula or muscles; conversely this study proposes that the apices of the bifurcated spines were the anchoring points for a split nuchal ligament, and that the trough of bifurcation was predominantly filled with interspinal ligaments. Ligaments provide energy-efficient elastic rebound, and a paired ligament in the cervical series would aid in prolonged, lateral movement in a horizontal plane (i.e. feeding).  相似文献   

2.
We investigated allometric relationships between vertebral centrum cranial surface areas and body weight and skeletal lumbar length in extant platyrrhine and cercopithecid species. Platyrrhines have smaller lumbar vertebral centra regarding the cranial surface area relative to their body weight than extant catarrhines. However, the stress to the spine of quadrupeds is not only influenced by the body weight but also its length, which contributes to the amount of bending moment. Our results indicated that platyrrhines and cercopithecids have similar lumbar vertebral centrum surface areas when they are scaled on the product of the body weight and skeletal lumbar length. Platyrrhines generally tend to have relatively short lumbar columns for a given body weight. As a result of this tendency, their vertebral centra appear relatively small if only body weight is taken into account. The centrum surface area is rather constant relative to the product of the body weight and skeletal lumbar length within platyrrhines or cercopithecids, despite the fact that skeletal lumbar length is in itself rather variable relative to body weight. This result indicates that the vertebral centrum articular area, the lumbar column length and the body weight are strongly correlated with each other and that such relationships are similar between platyrrhines and cercopithecids. These relationships were observed using both the zygapophyseal and rib definitions of the lumbar vertebrae. However, they were more clearly observed when the zygapophyseal definition was adopted. It appeared that lumbar vertebrae of Proconsul nyanzae (KNM−MW 13142) had distinctively smaller surface areas relative to its body weight and lumbar length than for platyrrhines and cercopithecids, differing from extant hominoids, which have comparatively larger lumbar vertebrae. In the case of Morotopithecus, the lumbar vertebral surface area seems to be as large as in extant platyrrhines and cercopithecids if it had a reduced number of lumbar vertebrae. It is uncertain whether its lumbar vertebral surface area was as large as in extant hominoids. Electronic Publication  相似文献   

3.
Among extant vertebrates, pneumatization of postcranial bones is unique to birds, with few known exceptions in other groups. Through reduction in bone mass, this feature is thought to benefit flight capacity in modern birds, but its prevalence in non-avian dinosaurs of variable sizes has generated competing hypotheses on the initial adaptive significance of postcranial pneumaticity. To better understand the evolutionary history of postcranial pneumaticity, studies have surveyed its distribution among non-avian dinosaurs. Nevertheless, the degree of pneumaticity in the basal coelurosaurian group Ornithomimosauria remains poorly known, despite their potential to greatly enhance our understanding of the early evolution of pneumatic bones along the lineage leading to birds. Historically, the identification of postcranial pneumaticity in non-avian dinosaurs has been based on examination of external morphology, and few studies thus far have focused on the internal architecture of pneumatic structures inside the bones. Here, we describe the vertebral pneumaticity of the ornithomimosaur Archaeornithomimus with the aid of X-ray computed tomography (CT) imaging. Complementary examination of external and internal osteology reveals (1) highly pneumatized cervical vertebrae with an elaborate configuration of interconnected chambers within the neural arch and the centrum; (2) anterior dorsal vertebrae with pneumatic chambers inside the neural arch; (3) apneumatic sacral vertebrae; and (4) a subset of proximal caudal vertebrae with limited pneumatic invasion into the neural arch. Comparisons with other theropod dinosaurs suggest that ornithomimosaurs primitively exhibited a plesiomorphic theropod condition for axial pneumaticity that was extended among later taxa, such as Archaeornithomimus and large bodied Deinocheirus. This finding corroborates the notion that evolutionary increases in vertebral pneumaticity occurred in parallel among independent lineages of bird-line archosaurs. Beyond providing a comprehensive view of vertebral pneumaticity in a non-avian coelurosaur, this study demonstrates the utility and need of CT imaging for further clarifying the early evolutionary history of postcranial pneumaticity.  相似文献   

4.
In terrestrial vertebrates, the pelvic girdle can reliably predict locomotor mode. Because of the diminished gravitational effects on positively buoyant bony fish, the same relationship does not appear to exist. However, within the negatively buoyant elasmobranch fishes, benthic batoids employ pelvic fin bottom‐walking and punting as primary or supplementary forms of locomotion. Therefore, in this study, we employed geometric and linear morphometrics to investigate if their pelvic girdles exhibit shape characteristics similar to those of sprawling terrestrial vertebrates. We tested for correlates of pelvic girdle shape with 1) Order, 2) Family, 3) Swim Mode, and/or 4) Punt Mode. Landmarks and semilandmarks were placed along outlines of dorsal views of 61 batoid pelvic girdles (3/3 orders, 10/13 families, 35/72 genera). The first three relative warps explained 88.45% of the variation among individuals (P < 0.01%). Only Order and Punt Mode contained groups that were all significantly different from each other (P < 0.01%). Discriminant function analyses indicated that the majority of variation within each category was due to differences in extension of lateral and prepelvic processes and puboischiac bar angle. Over 60% of the original specimens and 55% of the cross‐validated specimens were correctly classified. The neutral angle of the propterygium, which articulates with the pelvic girdle, was significantly different among punt modes, whereas only pectoral fin oscillators had differently shaped pelvic girdles when compared with batoids that perform other swimming modes (P < 0.01). Pelvic girdles of batoids vary greatly, and therefore, likely function in ways not previously described in teleost fishes. This study illustrates that pelvic girdle shape is a good predictor of punt mode, some forms of swimming mode, and a species' Order. Such correlation between locomotor style and pelvic girdle shape provides evidence for the convergent evolution of morphological features that support both sprawled‐gait terrestrial walking and aquatic bottom‐walking. J. Morphol. 275:100–110, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

5.
The anterior cervical vertebrae form the skeletal connection between the cranial and postcranial skeletons in higher tetrapods. As a result, the morphology of the atlas‐axis complex is likely to be shaped by selection pressures acting on either the head or neck. The neoceratopsian (Reptilia:Dinosauria) syncervical represents one of the most highly modified atlas‐axis regions in vertebrates, being formed by the complete coalescence of the three most anterior cervical vertebrae. In ceratopsids, the syncervical has been hypothesized to be an adaptation to support a massive skull, or to act as a buttress during intraspecific head‐to‐head combat. Here, we test these functional/adaptive hypotheses within a phylogenetic framework and critically examine the previously proposed methods for quantifying relative head size in the fossil record for the first time. Results indicate that neither the evolution of cranial weaponry nor large head size correlates with the origin of cervical fusion in ceratopsians, and we, therefore, reject both adaptive hypotheses for the origin of the syncervical. Anterior cervical fusion has evolved independently in a number of amniote clades, and further research on extant groups with this peculiar anatomy is needed to understand the evolutionary basis for cervical fusion in Neoceratopsia.  相似文献   

6.
The segmental series of somites in the vertebrate embryo gives rise to the axial skeleton. In amniote models, single vertebrae are derived from the sclerotome of two adjacent somites. This process, known as resegmentation, is well‐studied using the quail–chick chimeric system, but the presumed generality of resegmentation across vertebrates remains poorly evaluated. Resegmentation has been questioned in anamniotes, given that the sclerotome is much smaller and lacks obvious differentiation between cranial and caudal portions. Here, we provide the first experimental evidence that resegmentation does occur in a species of amphibian. Fate mapping of individual somites in the Mexican axolotl (Ambystoma mexicanum) revealed that individual vertebrae receive cells from two adjacent somites as in the chicken. These findings suggest that large size and segmentation of the sclerotome into distinct cranial and caudal portions are not requirements for resegmentation. Our results, in addition to those for zebrafish, indicate that resegmentation is a general process in building the vertebral column in vertebrates, although it may be achieved in different ways in different groups. J. Morphol. 275:141–152, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

7.
Most analyses on allometry of long bones in terrestrial mammals have focused on dimensional allometry, relating external bone measurements either to each other or to body mass. In this article, an analysis of long bone mass to body mass in 64 different species of mammals, spanning three orders of magnitude in body mass, is presented. As previously reported from analyses on total skeletal mass to body mass in terrestrial vertebrates, the masses of most appendicular bones scale with significant positive allometry. These include the pectoral and pelvic girdles, humerus, radius+ulna, and forelimb. Total hindlimb mass and the masses of individual hindlimb bones (femur, tibia, and metatarsus) scale isometrically. Metapodial mass correlates more poorly with body mass than the girdles or any of the long bones. Metapodial mass probably reflects locomotor behavior to a greater extent than do the long bones. Long bone mass in small mammals (<50 kg) scales with significantly greater positive allometry than bone mass in large (>50 kg) mammals, probably because of the proportionally shorter long bones of large mammals as a means of preserving resistance to bending forces at large body sizes. The positive allometric scaling of the skeleton in terrestrial animals has implications for the maximal size attainable, and it is possible that the largest sauropod dinosaurs approached this limit.  相似文献   

8.
The distribution of species body size is critically important for determining resource use within a group or clade. It is widely known that non-avian dinosaurs were the largest creatures to roam the Earth. There is, however, little understanding of how maximum species body size was distributed among the dinosaurs. Do they share a similar distribution to modern day vertebrate groups in spite of their large size, or did they exhibit fundamentally different distributions due to unique evolutionary pressures and adaptations? Here, we address this question by comparing the distribution of maximum species body size for dinosaurs to an extensive set of extant and extinct vertebrate groups. We also examine the body size distribution of dinosaurs by various sub-groups, time periods and formations. We find that dinosaurs exhibit a strong skew towards larger species, in direct contrast to modern day vertebrates. This pattern is not solely an artefact of bias in the fossil record, as demonstrated by contrasting distributions in two major extinct groups and supports the hypothesis that dinosaurs exhibited a fundamentally different life history strategy to other terrestrial vertebrates. A disparity in the size distribution of the herbivorous Ornithischia and Sauropodomorpha and the largely carnivorous Theropoda suggests that this pattern may have been a product of a divergence in evolutionary strategies: herbivorous dinosaurs rapidly evolved large size to escape predation by carnivores and maximise digestive efficiency; carnivores had sufficient resources among juvenile dinosaurs and non-dinosaurian prey to achieve optimal success at smaller body size.  相似文献   

9.
Long-bone circumference and weight in mammals, birds and dinosaurs   总被引:3,自引:0,他引:3  
The mid-shaft circumferences of the humerus and femur are closely related to body weight in living terrestrial vertebrates. Because these elements are frequently preserved in subfossil and fossil vertebrate skeletal materials, the relationship can be used to estimate body weight in extinct vertebrates. When the allometric equations are applied to the mid-shaft circumferences of these elements in dinosaurs, the weights calculated for some giant sauropods ( Brachiosaurus ) are found to be lighter than previous estimates.  相似文献   

10.
Pachycephalosaurids are small, herbivorous dinosaurs with domed skulls formed by massive thickening of the cranial roof. The function of the dome has been a focus of debate: the dome has variously been interpreted as the product of sexual selection, as an adaptation for species recognition, or as a weapon employed in intraspecific combat, where it was used in butting matches as in extant ungulates. This last hypothesis is supported by the recent identification of cranial pathologies in pachycephalosaurids, which appear to represent infections resulting from trauma. However, the frequency and distribution of pathologies have not been studied in a systematic fashion. Here, we show that pachycephalosaurids are characterized by a remarkably high incidence of cranial injury, where 22% of specimens have lesions on the dome. Frequency of injury shows no significant difference between different genera, but flat-headed morphs (here interpreted as juveniles or females) lack lesions. Mapping of injuries onto a digitial pachycephalosaurid skull shows that although lesions are distributed across the dome, they cluster near the apex, which is consistent with the hypothesis that the dome functioned for intraspecific butting matches.  相似文献   

11.
Birds are unique among living tetrapods in possessing pneumaticity of the postcranial skeleton, with invasion of bone by the lung and air-sac system. Postcranial skeletal pneumaticity (PSP) has been reported in numerous extinct archosaurs including pterosaurs and non-avian dinosaurs. Here we report a case of extreme PSP in a group of small-bodied, armored sauropod dinosaurs from the Upper Cretaceous of South America. Based on osteological data, we report an extensive invasion of pneumatic diverticula along the vertebral column, reaching the distal portion of the tail. Also, we provide evidence of pneumaticity in both pectoral and pelvic girdles. Our study reveals that the extreme PSP in archosaurs is not restricted to pterosaurs and theropod dinosaurs.  相似文献   

12.
In this study, the axial skeletons of two Early Paleocene marsupials, Mayulestes ferox and Pucadelphys andinus, were analyzed functionally and compared to that of six South American and three Australian species of extant marsupials. In the case of the South American opossums, myological data of the epaxial musculature were collected and analyzed and osteological-myological associations were related to locomotor behavior. Various features of the vertebral column that relate to diet or to locomotor or postural patterns were pointed out. These features include: the craniocaudal development of the neural process of the axis; the position of the anticlinal vertebra; the morphology of the neural processes of the thoracolumbar vertebrae (orientation, length, and craniocaudal width); the length, orientation, and curvature of the transverse processes of the lumbar vertebrae; and the length and robustness of the caudal vertebrae. In both fossil forms the vertebral column is mobile and allows a great range of flexion and extension of the spine, more so than in most of the living didelphids. It is emphasized here that the analysis of the axial skeleton complements and improves the conclusions provided by the forelimb and hindlimb analyses. It is proposed that Mayulestes and Pucadelphys represent an ancestral morphotype suggesting that the generalized type of locomotion of Paleocene marsupials was partly terrestrial with some climbing ability.  相似文献   

13.
Within Diplodocoidea (Dinosauria: Sauropoda), phylogenetic position of the three subclades Rebbachisauridae, Dicraeosauridae, and Diplodocidae is strongly influenced by a relatively small number of characters. Neural spine bifurcation, especially within the cervical vertebrae, is considered to be a derived character, with taxa that lack this feature regarded as relatively basal. Our analysis of dorsal and cervical vertebrae from small‐sized diplodocoids (representing at least 18 individuals) reveals that neural spine bifurcation is less well developed or absent in smaller specimens. New preparation of the roughly 200‐cm long diplodocid juvenile Sauriermuseum Aathal 0009 reveals simple nonbifurcated cervical neural spines, strongly reminiscent of more basal sauropods such as Omeisaurus. An identical pattern of ontogenetically linked bifurcation has also been observed in several specimens of the basal macronarian Camarasaurus, suggesting that this is characteristic of several clades of Sauropoda. We suggest that neural spine bifurcation performs a biomechanical function related to horizontal positioning of the neck that may become significant only at the onset of a larger body size, hence, its apparent absence or weaker development in smaller specimens. These results have significant implications for the taxonomy and phylogenetic position of taxa described from specimens of small body size. On the basis of shallow bifurcation of its cervical and dorsal neural spines, the small diplodocid Suuwassea is more parsimoniously interpreted as an immature specimen of an already recognized diplodocid taxon. Our findings emphasize the view that nonmature dinosaurs often exhibit morphologies more similar to their ancestral state and may therefore occupy a more basal position in phylogenetic analyses than would mature specimens of the same species. In light of this, we stress the need for phylogenetic reanalysis of sauropod clades where vital characters may be ontogenetically variable, particularly when data is derived from small individuals. J. Morphol., 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

14.
Three-dimensionally preserved skulls of small Paleogene land birds are very rare. Here, we describe a cranium and associated partial postcranial remains of an early Eocene stem group roller (Aves: Coraciiformes) from the London Clay of the Isle of Sheppey (England). The fossil shows features of the skull and vertebral column in great detail. It is distinguished from extant Coraciidae and Brachypteraciidae in several presumably plesiomorphic characteristics, which are likely to reflect differences in diet and/or foraging strategy between Eocene and extant rollers. Preserved stomach contents in other early Eocene fossils indicate that fruits were a regular part of the diet of stem group rollers. The extant Coraciidae and Brachypteraciidae, by contrast, almost exclusively feed on larger-sized invertebrates and small vertebrates, which are usually dispatched by beating before being swallowed. Stronger biting forces as well as the characteristic prey manipulation behavior of extant rollers may account for some of the observed differences in the cranial and vertebral morphology of the fossil and extant taxa, but the exact functional correlations remain elusive. We furthermore identify a previously undescribed cranial feature of rollers: a very large foramen for the ramus occipitalis of the arteria ophthalmica externa, which is of unknown functional significance and constitutes a potentially promising research target for future studies.  相似文献   

15.
The hero shrew''s (Scutisorex somereni) massive interlocking lumbar vertebrae represent the most extreme modification of the vertebral column known in mammals. No intermediate form of this remarkable morphology is known, nor is there any convincing theory to explain its functional significance. We document a new species in the heretofore monotypic genus Scutisorex; the new species possesses cranial and vertebral features representing intermediate character states between S. somereni and other shrews. Phylogenetic analyses of DNA sequences support a sister relationship between the new species and S. somereni. While the function of the unusual spine in Scutisorex is unknown, it gives these small animals incredible vertebral strength. Based on field observations, we hypothesize that the unique vertebral column is an adaptation allowing these shrews to lever heavy or compressive objects to access concentrated food resources inaccessible to other animals.  相似文献   

16.
Explanations of the distributions of terrestrial vertebrates during the Mesozoic are currently vigorously contested and debated in palaeobiogeography. Recent studies focusing on dinosaurs yield conflicting hypotheses. Dispersal, coupled with regional extinction or vicariance driven by continental break-up, have been cited as the main causal factors behind dinosaur distributions in the Mesozoic. To expand the scope of the debate and test for vicariance within another terrestrial group, I herein apply a cladistic biogeographical method to a large sample of Cretaceous crocodyliform taxa. A time-slicing methodology is employed and a refinement made to account for the divergence times of the analysed clades. The results provide statistically significant evidence that Gondwana fragmentation affected crocodyliform diversification during the Mid-Late Cretaceous. Detection of a vicariant pattern within crocodyliforms is important as it helps corroborate vicariance hypotheses in other fossil and extant groups as well as furthers the move towards more taxonomically diverse approaches to palaeobiogeographical research.  相似文献   

17.
Locked pectoral spines of the Channel Catfish Ictalurus punctatus more than double the fish's width and complicate ingestion by gape‐limited predators. The spine mates with the pectoral girdle, a robust structure that anchors the spine. This study demonstrates that both spine and girdle exhibit negative allometric growth and that pectoral spines and girdles are lighter in domesticated than in wild Channel Catfish. This finding could be explained by changes in selection pressure for spine growth during domestication or by an epigenetic effect in which exposure to predators in wild fish stimulates pectoral growth. We tested the epigenetic hypothesis by exposing domesticated Channel Catfish fingerlings to Largemouth Bass Micropterus salmoides predators for 13 weeks. Spines and girdles grow isometrically in the fingerlings, and regression analysis indicates no difference in proportional pectoral growth between control and predator‐exposed fish. Therefore a change in selection pressure likely accounts for smaller pectoral growth in domesticated Channel Catfish. Decreasing spine growth in older fish suggests anti‐predator functions are most important in smaller fish. Additionally, growth of the appendicular and axial skeleton is controlled differentially, and mechanical properties of the spine and not just its length are an important component of this defensive adaptation.  相似文献   

18.
The origin of flight in birds and theropod dinosaurs is a many-sided and debatable problem. We develop a new approach to the resolution of this problem, combining terrestrial and arboreal hypotheses of the origin of flight. The bipedalism was a key adaptation for the development of flight in both birds and theropods. The bipedalism dismissed the forelimbs from the supporting function and promoted transformation into wings. For the development of true flapping avian flight, a key role was played by the initial universal anisodactylous foot of birds. This foot pattern provided a firm support on both land and trees. Theropod dinosaurs, archaeopteryxes, and some other early feathered creatures had a pamprodactylous foot and, hence, they developed only gliding descent. Early birds descended by flattering parachuting with the use of incipient wings; this gave rise to true flight. Among terrestrial vertebrates, only bats, pterosaurians, and birds developed true flapping flight, although they followed different morphofunctional pathways when solving this task. However, it remains uncertain what initiated the adaptation of the three groups for the air locomotion. Nevertheless, the past decade has provided unexpectedly abundant paleontological data, which facilitate the resolution of this question with reference to birds.  相似文献   

19.
Aim To evaluate the Gunnerus Ridge land‐bridge hypothesis, which postulates a Late Cretaceous causeway between eastern Antarctica and southern Madagascar allowing the passage of terrestrial vertebrates. Location Eastern Antarctica, southern Indian Ocean, Madagascar. Methods The review involves palaeogeographical modelling, which draws upon geological and geophysical data, bathymetric charts, and plate tectonic reconstructions, and the evaluation of stratigraphically calibrated phylogenetic analyses to document ghost lineages of select taxa. Results The available geological and geophysical evidence indicates that eastern Antarctica’s Gunnerus Ridge and southern Madagascar were separated for the entire Late Cretaceous by a vast marine expanse. In the mid–Late Cretaceous, the gap was probably punctuated by land on two intervening physiographical highs, the northern Madagascar Plateau and Conrad Rise, the latter of which, although probably large, was still separated from Antarctica’s Riiser‐Larsen Peninsula by c. 1600 km. Recent, stratigraphically calibrated phylogenies including large, terrestrial end‐Cretaceous vertebrate taxa of Madagascar and the Indian subcontinent reveal long ghost lineages that extended into the Early Cretaceous. Main conclusions The view that Antarctica and Madagascar were connected by a long causeway between the Gunnerus Ridge and southern Madagascar in the Late Cretaceous, and that terrestrial vertebrates were able to colonize new frontiers using this physiographical feature, is almost certainly incorrect, as was previously demonstrated for the purported causeway between Antarctica and the Indian subcontinent across the Kerguelen Plateau. Connection across mainland Africa to account for the close relationships of several fossil and extant vertebrate taxa of Indo‐Madagascar and South America is another option, although this too lacks credibility. We conclude that (1) throughout the Late Cretaceous there was no intervening, continuous causeway through Antarctica and associated land bridges between South America to the west and Indo‐Madagascar to the east; and (2) mid‐ to large‐sized, obligate terrestrial forms (e.g. abelisauroid theropod and titanosaurian sauropod dinosaurs and notosuchian crocodyliforms) gained broad distribution across Gondwanan land masses prior to fragmentation and were isolated on Indo‐Madagascar before the end of the Early Cretaceous.  相似文献   

20.
In terms of their diversity and longevity, dinosaurs and birds were/are surely among the most successful of terrestrial vertebrates. Unfortunately, interpreting many aspects of the biology of dinosaurs and the earliest of the birds presents formidable challenges because they are known only from fossils. Nevertheless, a variety of attributes of these taxa can be inferred by identification of shared anatomical structures whose presence is causally linked to specialized functions in living reptiles, birds, and mammals. Studies such as these demonstrate that although dinosaurs and early birds were likely to have been homeothermic, the absence of nasal respiratory turbinates in these animals indicates that they were likely to have maintained reptile-like (ectothermic) metabolic rates during periods of rest or routine activity. Nevertheless, given the metabolic capacities of some extant reptiles during periods of elevated activity, early birds were probably capable of powered flight. Similarly, had, for example, theropod dinosaurs possessed aerobic metabolic capacities and habits equivalent to those of some large, modern tropical latitude lizards (e.g., Varanus), they may well have maintained significant home ranges and actively pursued and killed large prey. Additionally, this scenario of active, although ectothermic, theropod dinosaurs seems reinforced by the likely utilization of crocodilian-like, diaphragm breathing in this group. Finally, persistent in vivo burial of their nests and apparent lack of egg turning suggests that clutch incubation by dinosaurs was more reptile- than birdlike. Contrary to previous suggestions, there is little if any reliable evidence that some dinosaur young may have been helpless and nestbound (altricial) at hatching.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号