共查询到20条相似文献,搜索用时 15 毫秒
1.
The complex interactions between proteins and small organic molecules (ligands) are intensively studied because they play key roles in biological processes and drug activities. Here, we present a novel approach to characterize and map the ligand‐binding cavities of proteins without direct geometric comparison of structures, based on Principal Component Analysis of cavity properties (related mainly to size, polarity, and charge). This approach can provide valuable information on the similarities and dissimilarities, of binding cavities due to mutations, between‐species differences and flexibility upon ligand‐binding. The presented results show that information on ligand‐binding cavity variations can complement information on protein similarity obtained from sequence comparisons. The predictive aspect of the method is exemplified by successful predictions of serine proteases that were not included in the model construction. The presented strategy to compare ligand‐binding cavities of related and unrelated proteins has many potential applications within protein and medicinal chemistry, for example in the characterization and mapping of “orphan structures”, selection of protein structures for docking studies in structure‐based design, and identification of proteins for selectivity screens in drug design programs. Proteins 2010. © 2009 Wiley‐Liss, Inc. 相似文献
2.
A. A. Vaidya B. S. Lele M. G. Kulkarni R. A. Mashelkar 《Biotechnology and bioengineering》1999,64(4):418-425
Copolymers of N‐isopropylacrylamide and N‐acryloyl amino acid spacers of varying chain length were synthesized. p‐Aminobenzamidine (PABA) was chemically linked to the pendant carboxyl groups of these polymers to obtain thermoprecipitating affinity polymers. The inhibition constant (Ki) of these polymers for trypsin decreased, i.e., the efficiency of PABA–trypsin binding increased with increase in the spacer chain length. The polymer to which PABA was linked through a spacer of five methylene groups exhibited eleven times lower Ki than that of the polymer containing PABA without a spacer. Investigations on model inhibitors N‐acyl‐p‐aminobenzamidines showed that this enhancement in trypsin binding by the polymers was due to the spacer as well as to microenvironmental effects. Recovery and specific activity of the trypsin recovered increased with the spacer chain length. Separation of trypsin from a mixture of trypsin and chymotrypsin was also enhanced with the spacer chain length. The inhibition constants of these affinity polymers were not adversely affected by the crowding effect. © 1999 John Wiley & Sons, Inc. Biotechnol Bioeng 64: 418–425, 1999. 相似文献
3.
When a protein such as human serum albumin is added to the separation buffer in capillary electrophoresis, the mobility of solutes which bind to that protein may be altered. The change in mobility of the solute is a function both of the strength of the binding interaction, and the difference in mobility between the free solute and protein additive. By adding other ligands which themselves bind to the protein, the strength of the solute–protein binding may be modified, leading to a measurable change in the mobility of the solute. These effects are particularly striking for chiral compounds, where enantioselectivity may be completely lost on addition of a competitive ligand. Capillary electrophoresis with human serum ablumin as a buffer additive was used to separate the enantiomers of benzoin and three phenothiazine derivatives. A comparison of the binding of (S)-benzoin to human serum albumin as determined by capillary electrophoresis and by ultrafiltration was made. A variety of other ligands were then added to the buffer along with the protein, and the effects on mobility and enantioselectivity were studied. The displacers included (R)- and (S)-oxazepam hemisuccinate, (R)- and (S)-warfarin, nitrazepam, phenylbutazone, and octanoic acid. From the results obtained, it seems that capillary electrophoresis may be a useful, rapid method to screen for drug–drug interactions. There are some advantages of using this technique to study protein–ligand interactions: Only very small amounts of ligand are needed (useful when dealing with metabolites); for chiral compounds, if protein binding is stereoselective, then the method is also stereoselective, so single enantiomers are not needed; finally, measurements are obtained in solution, without the need for immobilization of the protein. A disadvantage is that the ligand and protein must have significantly different electrophoretic mobilities. © 1994 Wiley-Liss, Inc. 相似文献
4.
Understanding factors that drive protein–protein association is of fundamental importance. We show that a single geometric parameter in crystal structures of protein–protein complexes, the angle between the electric dipole of one subunit and the partner‐generated electric field at the same subunit, linearly correlates with experimentally determined protein–protein association rates. Imprint of a dynamic kinetic process in a single static geometric parameter, associated with mutual electrostatic orientation of subunits in protein–protein complexes, is elegant and demonstrates the universality of electrostatic steering in attenuating protein–protein association rates. That the essence of a complex phenomenon could be captured by properties of the final crystal structure of the complex implies that the electrostatic orientations of protein subunits in crystal structures and the associated transition states are nearly identical. Further, the cosine of the angle, alone, is shown to be sufficient in predicting association rate constants, with accuracies comparable to currently available predictors that use more intricate methodologies. Our results offer mechanistic insights and could be useful in development of coarse‐grained models. Proteins 2015; 83:1557–1562. © 2015 Wiley Periodicals, Inc. 相似文献
5.
Petras J. Kundrotas Ilya A. Vakser 《Protein science : a publication of the Protein Society》2013,22(8):1141-1145
Proteins often bind other proteins in more than one way. Thus alternative binding modes is an essential feature of protein interactions. Such binding modes may be detected by X‐ray crystallography and thus reflected in Protein Data Bank. The alternative binding is often observed not for the protein itself but for its structural homolog. The results of this study based on the analysis of a comprehensive set of co‐crystallized protein–protein complexes show that the alternative binding modes generally do not overlap, but are spatially separated. This effect is based on molecular recognition characteristics of the protein structures. The results are also in excellent agreement with the intermolecular energy funnel size estimates obtained previously by an independent methodology. The results provide an important insight into the principles of protein association, as well as potential guidelines for modeling of protein complexes and the design of protein interfaces. 相似文献
6.
Omar Deeb Martha Cecilia Rosales‐Hernández Carlos Gómez‐Castro Ramón Garduño‐Juárez José Correa‐Basurto 《Biopolymers》2010,93(2):161-170
Five‐nanosecond molecular dynamics (MD) simulations were performed on human serum albumin (HSA) to study the conformational features of its primary ligand binding sites (I and II). Additionally, 11 HSA snapshots were extracted every 0.5 ns to explore the binding affinity (Kd) of 94 known HSA binding drugs using a blind docking procedure. MD simulations indicate that there is considerable flexibility for the protein, including the known sites I and II. Movements at HSA sites I and II were evidenced by structural analyses and docking simulations. The latter enabled the study and analysis of the HSA–ligand interactions of warfarin and ketoprofen (ligands binding to sites I and II, respectively) in greater detail. Our results indicate that the free energy values by docking (Kd observed) depend upon the conformations of both HSA and the ligand. The 94 HSA–ligand binding Kd values, obtained by the docking procedure, were subjected to a quantitative structure‐activity relationship (QSAR) study by multiple regression analysis. The best correlation between the observed and QSAR theoretical (Kd predicted) data was displayed at 2.5 ns. This study provides evidence that HSA binding sites I and II interact specifically with a variety of compounds through conformational adjustments of the protein structure in conjunction with ligand conformational adaptation to these sites. These results serve to explain the high ligand‐promiscuity of HSA. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 161–170, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com 相似文献
7.
To clarify the interplay between the binding affinity and kinetics of protein–protein interactions, and the possible role of intrinsically disordered proteins in such interactions, molecular simulations were carried out on 20 protein complexes. With bias potential and reweighting techniques, the free energy profiles were obtained under physiological affinities, which showed that the bound‐state valley is deep with a barrier height of 12 ? 33 RT. From the dependence of the affinity on interface interactions, the entropic contribution to the binding affinity is approximated to be proportional to the interface area. The extracted dissociation rates based on the Arrhenius law correlate reasonably well with the experimental values (Pearson correlation coefficient R = 0.79). For each protein complex, a linear free energy relationship between binding affinity and the dissociation rate was confirmed, but the distribution of the slopes for intrinsically disordered proteins showed no essential difference with that observed for ordered proteins. A comparison with protein folding was also performed. Proteins 2016; 84:920–933. © 2016 Wiley Periodicals, Inc. 相似文献
8.
A fast Monte Carlo integration algorithm with varying time step is described for cooperative binding of ligands of arbitrary length to a one-dimensional lattice. This algorithm is particularly suitable for strongly cooperative or anticooperative systems, i.e., when the time scales for different kinetic events are very different. As an application, the kinetics of a bimodal two-ligand system are briefly discussed. 相似文献
9.
Sreekanth Rajan Kwanghee Baek Ho Sup Yoon 《Journal of molecular recognition : JMR》2013,26(11):550-555
Hydrogen bonds are important interaction forces observed in protein structures. They can be classified as stronger or weaker depending on their energy, thereby reflecting on the type of donor. The contribution of weak hydrogen bonds is deemed as an important factor toward structure stability along with the stronger bonds. One such bond, the C‐H…O type hydrogen bond, is shown to make a contribution in maintaining three dimensional structures of proteins. Apart from their presence within protein structures, the role of these bonds in protein–ligand interactions is also noteworthy. In this study, we present a statistical analysis on the presence of C‐H…O hydrogen bonds observed between FKBPs and their cognate ligands. The FK506‐binding proteins (FKBPs) carry peptidyl cis–trans isomerase activity apart from the immunosuppressive property by binding to the immunosuppressive drugs FK506 or rapamycin. Because the active site of FKBPs is lined up by many hydrophobic residues, we speculated that the prevalence of C‐H…O hydrogen bonds will be considerable. In a total of 25 structures analyzed, a higher frequency of C‐H…O hydrogen bonds is observed in comparison with the stronger hydrogen bonds. These C‐H…O hydrogen bonds are dominated by a highly conserved donor, the Cα/β of Val55 and an acceptor, the backbone oxygen of Glu54. Both these residues are positioned in the β4‐α1 loop, whereas the other residues Tyr26, Phe36 and Phe99 with higher frequencies are lined up at the opposite face of the active site. These preferences could be implicated in FKBP pharmacophore models toward enhancing the ligand affinity. This study could be a prelude to studying other proteins with hydrophobic pockets to gain better insights into ligand recognition. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
10.
Expression pattern and ligand‐binding properties of odorant‐binding protein 13 from Monochamus alternatus hope 下载免费PDF全文
Odorant‐binding proteins (OBPs) are believed to play an important role in olfactory recognition. In this study, expression pattern and fluorescence binding characteristics of MaltOBP13 from the Japanese pine sawyer beetle, Monochamus alternatus Hope, were investigated via qPCR analysis of MaltOBP13 mRNA level and binding assay of MaltOBP13 and ligands. qPCR monitoring indicated MaltOBP13 mainly expressed in newly emerged males, particularly highly expressed in the last abdominal segment of males, and the expression level was significantly higher in 13‐day‐old mated adults than those of other stages. To further understand the function of the MaltOBP13 protein in odorant reception, the binding affinity of recombinant MaltOBP13 to ligands was tested by fluorescence binding assays with N‐phenyl‐1‐naphthylamine as a fluorescent probe. The results of this assay indicated that MaltOBP13 exhibited a high binding affinity for pine volatiles and binding capacity was higher in acidic conditions than in neutral environment, indicating a possible role in finding host plants. 相似文献
11.
Continuous exponential concentration gradients, accurate, precise, and reproducible to better than 1% over at least a 103–104 concentration range, can be easily produced. In fact, it appears that these gradients may be substantially better than this. Such gradients have been used to generate a continuous ligand binding isotherm for the system Mg++ + Eriochrome Black T over a 106 ligand concentration range. This continuous isotherm is shown to be sufficiently precise to provide a first derivative function Γ(y), which is precise to 0.4%. The moments of Γ(y) were calculated and found to be extremely accurate. For example, the second moment about the mean was calculated to be 3.32 and 3.30 for two different experiments compared to a theoretical value of 3.29. The general application of these techniques to generate continuous ligand binding isotherms is discussed. 相似文献
12.
C. Nick Pace Hailong Fu Katrina Lee Fryar John Landua Saul R. Trevino David Schell Richard L. Thurlkill Satoshi Imura J. Martin Scholtz Ketan Gajiwala Jozef Sevcik Lubica Urbanikova Jeffery K. Myers Kazufumi Takano Eric J. Hebert Bret A. Shirley Gerald R. Grimsley 《Protein science : a publication of the Protein Society》2014,23(5):652-661
Our goal was to gain a better understanding of the contribution of the burial of polar groups and their hydrogen bonds to the conformational stability of proteins. We measured the change in stability, Δ(ΔG), for a series of hydrogen bonding mutants in four proteins: villin headpiece subdomain (VHP) containing 36 residues, a surface protein from Borrelia burgdorferi (VlsE) containing 341 residues, and two proteins previously studied in our laboratory, ribonucleases Sa (RNase Sa) and T1 (RNase T1). Crystal structures were determined for three of the hydrogen bonding mutants of RNase Sa: S24A, Y51F, and T95A. The structures are very similar to wild type RNase Sa and the hydrogen bonding partners form intermolecular hydrogen bonds to water in all three mutants. We compare our results with previous studies of similar mutants in other proteins and reach the following conclusions. (1) Hydrogen bonds contribute favorably to protein stability. (2) The contribution of hydrogen bonds to protein stability is strongly context dependent. (3) Hydrogen bonds by side chains and peptide groups make similar contributions to protein stability. (4) Polar group burial can make a favorable contribution to protein stability even if the polar groups are not hydrogen bonded. (5) The contribution of hydrogen bonds to protein stability is similar for VHP, a small protein, and VlsE, a large protein. 相似文献
13.
Sudo Y Yamabi M Kato S Hasegawa C Iwamoto M Shimono K Kamo N 《Journal of molecular biology》2006,357(4):1274-1282
Four rhodopsins, bacteriorhodopsin (bR), halorhodopsin (hR), sensory rhodopsin (sR) and phoborhodopsin (pR) exist in archaeal membranes. bR and hR work as a light-driven ion pump. sR and pR work as a photo-sensor of phototaxis, and form signaling complexes in membranes with their respective cognate transducer proteins HtrI (with sR) and HtrII (with pR), through which light signals are transmitted to the cytoplasm. What is the determining factor(s) of the specific binding to form the complex? Binding of the wild-type or mutated rhodopsins with HtrII was measured by isothermal titration calorimetric analysis (ITC). bR and hR could not bind with HtrII. On the other hand, sR could bind to HtrII, although the dissociation constant (K(D)) was about 100 times larger than that of pR. An X-ray crystallographic structure of the pR/HtrII complex revealed formation of two specific hydrogen bonds whose pairs are Tyr199(pR)/Asn74(HtrII) and Thr189(pR)/Glu43(HtrII)/Ser62(HtrII). To investigate the importance of these hydrogen bonds, the K(D) value for the binding of various mutants of bR, hR, sR and pR with HtrII was estimated by ITC. The K(D) value of T189V(pR)/Y199F(pR), double mutant/HtrII complex, was about 100-fold larger than that of the wild-type pR, whose K(D) value was 0.16 microM. On the other hand, bR and hR double mutants, P200T(bR)/V210Y(bR) and P240T(hR)/F250Y(hR), were able to bind with HtrII. The K(D) value of these complexes was estimated to be 60.1(+/-10.7) microM for bR and to be 29.1(+/-6.1) microM for hR, while the wild-type bR and hR did not bind with HtrII. We concluded that these two specific hydrogen bonds play important roles in the binding between the rhodopsins and transducer protein. 相似文献
14.
Anne Katrine Wallis Ateesh Sidhu Lee J. Byrne Mark J. Howard Lloyd W. Ruddock Richard A. Williamson Robert B. Freedman 《Protein science : a publication of the Protein Society》2009,18(12):2569-2577
Purified preparations of the recombinant b′x domain fragment of human protein‐disulphide isomerase (PDI), which are homogeneous by mass spectrometry and sodium dodecyl sulfate polyacrylamide gel electrophoresis, comprise more than one species when analyzed by ion‐exchange chromatography and nondenaturing polyacrylamide gel electrophoresis. These species were resolved and shown to be monomer and dimer by analytical ultracentrifugation and analytical size‐exclusion chromatography. Spectroscopic properties indicate that the monomeric species corresponds to the “capped” conformation observed in the x‐ray structure of the I272A mutant of b′x (Nguyen, Wallis, Howard, Haapalainen, Salo, Saaranen, Sidhu, Wierenga, Freedman, Ruddock, and Williamson, J Mol Biol 2008;383:1144‐1155) in which the x region binds to a hydrophobic patch on the surface of the b′ domain; conversely, the dimeric species has an “open” or “uncapped” conformation in which the x region does not bind to this surface. The larger bb′x fragment of human PDI shows very similar behavior to b′x and can be resolved into a capped monomeric species and an uncapped dimer. Preparations of recombinant b′ domain of human PDI and of the bb′ domain pair are found exclusively as dimers. Full‐length PDI is known to comprise a mixture of monomeric and dimeric species, whereas the isolated a , b , and a′ domains of PDI are found exclusively as monomers. These results show that the b′ domain of human PDI tends to form homodimers—both in isolation and in other contexts—and that this tendency is moderated by the adjacent x region, which can bind to a surface patch on the b′ domain. 相似文献
15.
16.
P. Benjamin Stranges Brian Kuhlman 《Protein science : a publication of the Protein Society》2013,22(1):74-82
The accurate design of new protein–protein interactions is a longstanding goal of computational protein design. However, most computationally designed interfaces fail to form experimentally. This investigation compares five previously described successful de novo interface designs with 158 failures. Both sets of proteins were designed with the molecular modeling program Rosetta. Designs were considered a success if a high‐resolution crystal structure of the complex closely matched the design model and the equilibrium dissociation constant for binding was less than 10 μM. The successes and failures represent a wide variety of interface types and design goals including heterodimers, homodimers, peptide‐protein interactions, one‐sided designs (i.e., where only one of the proteins was mutated) and two‐sided designs. The most striking feature of the successful designs is that they have fewer polar atoms at their interfaces than many of the failed designs. Designs that attempted to create extensive sets of interface‐spanning hydrogen bonds resulted in no detectable binding. In contrast, polar atoms make up more than 40% of the interface area of many natural dimers, and native interfaces often contain extensive hydrogen bonding networks. These results suggest that Rosetta may not be accurately balancing hydrogen bonding and electrostatic energies against desolvation penalties and that design processes may not include sufficient sampling to identify side chains in preordered conformations that can fully satisfy the hydrogen bonding potential of the interface. 相似文献
17.
Molecular characterization,expression pattern and ligand‐binding properties of the pheromone‐binding protein gene from Cyrtotrachelus buqueti 下载免费PDF全文
Wei Yang Chun‐Ping Yang Zhang‐Ming Chen Lin Lu Yan‐Lin Liu Yuan‐Yuan Tao 《Physiological Entomology》2017,42(4):369-378
Pheromone‐binding proteins (PBPs) play important roles in the information exchange between insect sexes, specifically in the process of transporting fat‐soluble odour molecules from the external environment to olfactory receptors through the olfactory sensillum lymph. The PBP functions in this process may explain the sex pheromone identification mechanism used by insects, laying a theoretical foundation for the prevention and control of pests by interfering with olfactory recognition. In the present study, a PBP gene of Cyrtotrachelus buqueti (GenBank accession number: KU845733) is cloned for prokaryotic expression. Using N‐phenyl‐1‐naphthylamine as the fluorescent probe in a competitive binding assay, the ability of CbuqPBP1 to bind 12 sex pheromone analogues and three volatiles of Neosinocalamus affinis shoots is examined. Of the 12 C. buqueti sex pheromone analogues, dibutyl phthalate gives the greatest displacement (inhibitory constant value of 11.1 μm ), whereas the other sex pheromone components show much smaller displacements. Consistent with other PBPs, the three plant volatiles (linalool, benzaldehyde and indole) show only a limited displacement of CbuqPBP1. However, the binding abilities of 1 : 1 ratios of each of the three plant volatiles with dibutyl phthalate show increases of 62.3%, 65.1% and 51.7% over the binding abilities of the three plant volatiles alone. CbuqPBP1 has dual roles in the processes of sensing sex pheromones and plant volatiles. 相似文献
18.
Evan Mills Kevin Truong 《Protein science : a publication of the Protein Society》2009,18(6):1252-1260
Protein localization is an important regulatory mechanism in many cell signaling pathways such as cytoskeletal organization and genetic regulation. The specific mechanism of protein localization determines the kinetics and morphological constraints of protein translocation, and thus affects the rate and extent of localization. To investigate the affect of localization kinetics and morphology on protein localization, we designed a protein localization system based on Ca2+‐calmodulin and Src homology 3 domain binding peptides that can translocate between specific localizations in response to a Ca2+ signal. We used a stochastic biomolecular simulator to predict that such a protein localization system will exhibit slower and less complete translocations when the association kinetics of a binding domain and peptide are reduced. As well, we predicted that increasing the diffusion resistance by manipulating the morphology of the system would similarly impair translocation speed and completeness. We then constructed a network of synthetic fusion proteins and showed that these predictions could be qualitatively confirmed in vitro. This work provides a basis for explaining the different characteristics (rate and extent) of protein transport and localization in cells as a consequence of the kinetics and morphology of the transport mechanism. 相似文献
19.
20.
Juranić N Atanasova E Streiff JH Macura S Prendergast FG 《Protein science : a publication of the Protein Society》2007,16(7):1329-1337
In apo and holoCaM, almost half of the hydrogen bonds (H-bonds) at the protein backbone expected from the corresponding NMR or X-ray structures were not detected by h3JNC' couplings. The paucity of the h3JNC' couplings was considered in terms of dynamic features of these structures. We examined a set of seven proteins and found that protein-backbone H-bonds form two groups according to the h3JNC' couplings measured in solution. H-bonds that have h3JNC' couplings above the threshold of 0.2 Hz show distance/angle correlation among the H-bond geometrical parameters, and appear to be supported by the backbone dynamics in solution. The other H-bonds have no such correlation; they populate the water-exposed and flexible regions of proteins, including many of the CaM helices. The observed differentiation in a dynamical behavior of backbone H-bonds in apo and holoCaM appears to be related to protein functions. 相似文献