首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Chameleons (Chamaeleonidae) are known for their arboreal lifestyle, in which they make use of their prehensile tail. Yet, some species have a more terrestrial lifestyle, such as Brookesia and Rieppeleon species, as well as some chameleons of the genera Chamaeleo and Bradypodion. The main goal of this study was to identify the key anatomical features of the tail vertebral morphology associated with prehensile capacity. Both interspecific and intra-individual variation in skeletal tail morphology was investigated. For this, a 3D-shape analysis was performed on vertebral morphology using μCT-images of different species of prehensile and nonprehensile tailed chameleons. A difference in overall tail size and caudal vertebral morphology does exist between prehensile and nonprehensile taxa. Nonprehensile tailed species have a shorter tail with fewer vertebrae, a generally shorter neural spine and shorter transverse processes that are positioned more anteriorly (with respect to the vertebral center). The longer tails of prehensile species have more vertebrae as well as an increased length of the processes, likely providing a greater area for muscle attachment. At the intra-individual level, regional variation is observed with more robust proximal tail vertebrae having longer processes. The distal part has relatively longer vertebrae with shorter processes. Although longer, the small size and high number of the distal vertebrae allows the tail to coil around perches.  相似文献   

2.
The caudal myology of prehensile-tailed monkeys (Cebus apella, Alouatta palliata, Alouatta seniculus, Lagothrix lagotricha, and Ateles paniscus) and nonprehensile-tailed primates (Eulemur fulvus, Aotus trivirgatus, Callithrix jacchus, Pithecia pithecia, Saimiri sciureus, Macaca fascicularis, and Cercopithecus aethiops) was examined and compared in order to identify muscular differences that correlate with osteological features diagnostic of tail prehensility. In addition, electrophysiological stimulation was carried out on different segments of the intertransversarii caudae muscle of an adult spider monkey (Ateles geoffroyi) to assess their action on the prehensile tail. Several important muscular differences characterize the prehensile tail of New World monkeys compared to the nonprehensile tail of other primates. In atelines and Cebus, the mass of extensor caudae lateralis and flexor caudae longus muscles is more uniform along the tail, and their long tendons cross a small number of vertebrae before insertion. Also, prehensile-tailed monkeys, especially atelines, are characterized by well-developed flexor and intertransversarii caudae muscles compared to nonprehensile-tailed primates. Finally, Ateles possesses a bulkier abductor caudae medialis and a more cranial origin for the first segment of intertransversarii caudae than do other prehensile-tailed platyrrhines. These myological differences between nonprehensile-tailed and prehensile-tailed primates, and among prehensile-tailed monkeys, agree with published osteological and behavioral data. Caudal myological similarities and differences found in Cebus and atelines, combined with tail-use data from the literature, support the hypothesis that prehensile tails evolved in parallel in Cebus and atelines. © 1995 Wiley-Liss, Inc.  相似文献   

3.
A study of the platyrrhine prehensile tail provides an opportunity to better understand how ecological and biomechanical factors affect the ability of primates to distribute mass across many different kinds of arboreal supports. Young individuals experience ontogenetic changes in body mass, limb proportions, and motor skills that are likely to exert a strong influence on foraging strategies, social behaviors, support use, and associated prehensile‐tail use. In this research, I examine ontogenetic patterns of prehensile‐tail use in Cebus capucinus and Alouatta palliata. I collected behavioral data on activity, positional context, support size, and prehensile‐tail use in five age categories of white‐faced capuchins and mantled howlers during a 12‐month period at Estación Biológica La Suerte in northeastern Costa Rica. Infant and juvenile howlers and capuchins were found to use their prehensile tails significantly more often than adults during feeding, foraging, and social behavior. Prehensile‐tail use did not show predictable increases during growth. In both species, adults used their prehensile tails in mass‐bearing modes significantly less often than juveniles. Despite differences in tail anatomy in Cebus and Alouatta, prehensile‐tail use was observed to follow an increasing trajectory from infancy, peaking during juvenescence, and then decreasing in older juveniles and adults. In both species, it appeared that adult patterns of prehensile‐tail use reflected the demands placed on young juveniles. Am. J. Primatol. 74:770‐782, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

4.
Tale of tails: parallelism and prehensility   总被引:1,自引:0,他引:1  
The occurrence of prehensile tails among only five platyrrhine genera--Cebus, Alouatta, Lagothrix, Ateles, and Brachyteles--might be interpreted as evidence that these are a closely related, possibly monophyletic group. In the absence of behavioral data, it is impossible to test whether all possess equivalent biological roles; such would lend credence to the idea that their tails evolved from an homologous, derived character complex. Contrariwise, the tendency for species of Cebus to have "averagely" proportioned or relatively short tails, in contrast to the relatively elongate tails of howlers and other atelines; osteological differences in caudal and sacral morphology; and a lack of ateline-like tail/neocortex correlates in Cebus, all imply that prehensility has evolved twice in parallel: once (homologously) in atelines and again in capuchins.  相似文献   

5.
Prehensile tails appear to have evolved at least twice in platyrrhine evolution. In the atelines, the tail is relatively long and possesses a bare area on the distal part of its ventral surface that is covered with der-matoglyphs and richly innervated with Meissner's corpuscles. In contrast, the prehensile tail of Cebus is relatively short, fully haired, and lacks specialized tactile receptors. Little is currently known regarding tail function in capuchins, and whether their prehensile tail serves a greater role in feeding or traveling. In this paper we examine patterns of positional behavior, substrate preference, and tail use in wild white-faced capuchins (Cebus capucinus) inhabiting a wet tropical forest in northeastern Costa Rica. Observational data were collected over the course of 3 months on adult capuchins using an instantaneous focal animal time sampling technique. Differences in the frequency and context of tail use, and the estimated amount of weight support provided by the tail relative to other appendages during feeding/foraging and traveling were used as measures of the ecological role of this specialized organ in capuchin positional behavior. During travel, quadrupedal walking, leaping, and climbing dominated the capuchin positional repertoire. The capuchin tail provided support in only 13.3% of travel and was principally employed during below branch locomotor activities. In contrast, tail-assisted postures accounted for 40.6% of all feeding and foraging records and occurred primarily in two contexts. The tail was used to suspend the individual below a branch while feeding, as well as to provide leverage and weight support in above-branch postures associated with the extraction of prey from difficult to search substrates. A comparison of tail use in Cebus, with published data on the atelines indicates that both taxa possess a grasping tail that is capable of supporting the animal's full body weight. In capuchins and howling monkeys, the tail appears to be used more frequently and serves a greater weight-bearing role during feeding than during traveling. In Ateles, and possibly Brachyteles, and Lagothrix, however, the prehensile tail serves a dual role in both feeding and forelimb suspensory locomotion. Additional relationships between white-faced capuchin feeding, positional behavior, extractive foraging techniques, and prehensile tail use are discussed.  相似文献   

6.
The dynamic role of the prehensile tail of atelines during locomotion is poorly understood. While some have viewed the tail of Ateles simply as a safety mechanism, others have suggested that the prehensile tail plays an active role by adjusting pendulum length or controlling lateral sway during bimanual suspensory locomotion. This study examines the bony and muscular anatomy of the prehensile tail as well as the kinematics of tail use during tail-assisted brachiation in two primates, Ateles and Lagothrix. These two platyrrhines differ in anatomy and in the frequency and kinematics of suspensory locomotion. Lagothrix is stockier, has shorter forelimbs, and spends more time traveling quadrupedally and less time using bimanual suspensory locomotion than does Ateles. In addition, previous studies showed that Ateles exhibits greater hyperextension of the tail, uses its tail to grip only on alternate handholds, and has a larger abductor caudae medialis muscle compared to Lagothrix. In order to investigate the relationship between anatomy and behavior concerning the prehensile tail, osteological data and kinematic data were collected for Ateles fusciceps and Lagothrix lagothricha. The results demonstrate that Ateles has more numerous and smaller caudal elements, particularly in the proximal tail region. In addition, transverse processes are relatively wider, and sacro-caudal articulation is more acute in Ateles compared to Lagothrix. These differences reflect the larger abductor muscle mass and greater hyperextension in Ateles. In addition, Ateles shows fewer side-to-side movements during tail-assisted brachiation than does Lagothrix. These data support the notion that the prehensile tail represents a critical dynamic element in the tail-assisted brachiation of Ateles, and may be useful in developing inferences concerning behavior in fossil primates.  相似文献   

7.
8.
Viperids are a species rich clade of snakes that vary greatly in both morphology and ecology. Many species in the family express tail specializations used for defensive warnings, prey lures, and stability during locomotion and striking. To examine the relationships among ecology, behavior, and vertebral number in the family Viperidae, morphological data (maximum total length and the number of pre-cloacal and caudal vertebrae), macrohabitat use, and tail specialization for 157 viperids were gleaned from published sources. A composite tree topology was constructed from multiple published viperid phylogenies for independent contrasts analysis. The number of vertebrae was strongly correlated with the total length of the snake. Results of both non-phylogenetic and phylogenetically corrected analysis showed that macrohabitat use did not strongly influence total snake length. However, the number of vertebrae per unit length did vary among species according to macrohabitat. Specifically, vertebral density increased with increasing arboreality. Overall, viperids showed a positive correlation between the number of caudal and pre-cloacal vertebrae, but separately rattlesnakes had a significant negative correlation. Species with prehensile tails and those that caudal lure had the most caudal vertebrae. The increased caudal segments of prehensile and luring tails likely improve performance when grasping small vegetation for support or imitating invertebrate prey. These results illustrate that vertebral number is a primary characteristic involved in the diversification of viper species and ecology.  相似文献   

9.
We examined caudal anatomy in two species of prehensile‐tailed lizards, Furcifer pardalis and Corucia zebrata. Although both species use their tails to grasp, each relies on a strikingly different anatomy to do so. The underlying anatomies appear to reflect phylogenetic constraints on the consequent functional mechanisms. Caudal autotomy is presumably the ancestral condition for lizards and is allowed by a complex system of interdigitating muscle segments. The immediate ancestor of chameleons was nonautotomous and did not possess this specialized anatomy; consequently, the derived arrangement in the chameleon tail is unique among lizards. The limb functions as an articulated linkage system with long tendinous bands originating from longitudinal muscles to directly manipulate vertebrae. Corucia is incapable of autotomy, but it is immediately derived from autotomous ancestors. As such, it has evolved a biomechanical system for prehension quite different from that of chameleons. The caudal anatomy in Corucia is very similar to that of lizards with autotomous tails, yet distinct differences in the ancestral pattern and its relationship to the subdermal tunic are derived. Instead of the functional unit being individual autotomy segments, the interdigitating prongs of muscle have become fused with an emphasis on longitudinal stacks of muscular cones. The muscles originate from the vertebral column and a subdermal collagenous tunic and insert within the adjacent cone. However, there is remarkably little direct connection with the bones. The muscles have origins more associated with the tunic and muscular septa. Like the axial musculature of some fish, the tail of Corucia utilizes a design in which these collagenous elements serve as an integral skeletal component. This arrangement provides Corucia with an elegantly designed system capable of a remarkable variety of bending movements not evident in chameleon tails. J. Morphol. 239:143–155, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

10.
Taillessness is a distinctive synapomorphy of the Hominoidea that has implications for interpretation of the locomotor behaviors and phylogenetic affinities of the clade’s earliest members. However, difficulties persist in confidently identifying taillessness in the catarrhine fossil record, stemming largely from our limited knowledge of the anatomical features with which the tail is associated. Here, we compare the morphology of the sacrum, the sole bony link between the tail and the rest of the body, among extant tailless hominoids and a broad sample of extant cercopithecoids known to vary in tail length (i.e., ‘very short’, ‘short’, and ‘long’) in order to identify morphological correlates of tail length. We examine three features of the sacrum, including the shape of the sacrum’s caudal articular surface (CAS), the sacrocaudal articulation (SCA) angle, and the lateral expansion of the last sacral vertebra’s transverse processes. Compared with all other taxa, ‘long’-tailed cercopithecoids have significantly more circularly-shaped CASs, more acute SCA angles, and more laterally expanded transverse processes of the last sacral vertebra. Tailless hominoids have significantly more elliptically-shaped CASs and less laterally expanded transverse processes than all tailed cercopithecoids, but in the latter parameter, they only differ significantly from ‘long’-tailed cercopithecoids. Cercopithecoids with ‘short’ and ‘very short’ tails are intermediate between tailless hominoids and ‘long’-tailed cercopithecoids with respect to CAS shape and lateral expansion of the transverse processes. SCA angle distinguishes clearly among all three cercopithecoid tail length groups. The results of this study provide evidence for significant differences in sacral morphology among extant catarrhines known to differ in tail length, and have implications for making inferences about tail length and function in extinct catarrhines.  相似文献   

11.
A well‐preserved calcaneus referrable to Proteopithecus sylviae from the late Eocene Quarry L‐41 in the Fayum Depression, Egypt, provides new evidence relevant to this taxon's uncertain phylogenetic position. We assess morphological affinities of the new specimen using three‐dimensional geometric morphometric analyses with a comparative sample of primate calcanei representing major extinct and extant radiations (n = 58 genera, 106 specimens). Our analyses reveal that the calcaneal morphology of Proteopithecus is most similar to that of the younger Fayum parapithecid Apidium. Principal components analysis places Apidium and Proteopithecus in an intermediate position between primitive euprimates and crown anthropoids, based primarily on landmark configurations corresponding to moderate distal elongation, a more distal position of the peroneal tubercle, and a relatively “unflexed” calcaneal body. Proteopithecus and Apidium are similar to cercopithecoids and some omomyiforms in having an ectal facet that is more tightly curved, along with a larger degree of proximal calcaneal elongation, whereas other Fayum anthropoids, platyrrhines and adapiforms have a more open facet with less proximal elongation. The similarity to cercopithecoids is most plausibly interpreted as convergence given the less tightly curved ectal facets of stem catarrhines. The primary similarities between Proteopithecus and platyrrhines are mainly in the moderate distal elongation and the more distal position of the peroneal tubercle, both of which are not unique to these groups. Proteopithecus and Apidium exhibit derived anthropoid features, but also a suite of primitive retentions. The calcaneal morphology of Proteopithecus is consistent with our cladistic analysis, which places proteopithecids as a sister group of Parapithecoidea. Am J Phys Anthropol 151:372–397, 2013.© 2013 Wiley Periodicals, Inc.  相似文献   

12.
Physical anthropologists have devoted considerable attention to the structure and function of the primate prehensile tail. Nevertheless, previous morphological studies have concentrated solely on adults, despite behavioral evidence that among many primate taxa, including capuchin monkeys, infants and juveniles use their prehensile tails during a greater number and greater variety of positional behaviors than do adults. In this study, we track caudal vertebral growth in a mixed longitudinal sample of white-fronted and brown capuchin monkeys (Cebus albifrons and Cebus apella). We hypothesized that young capuchins would have relatively robust caudal vertebrae, affording them greater tail strength for more frequent tail-suspension behaviors. Our results supported this hypothesis. Caudal vertebral bending strength (measured as polar section modulus at midshaft) scaled to body mass with negative allometry, while craniocaudal length scaled to body mass with positive allometry, indicating that infant and juvenile capuchin monkeys are characterized by particularly strong caudal vertebrae for their body size. These findings complement previous results showing that long bone strength similarly scales with negative ontogenetic allometry in capuchin monkeys and add to a growing body of literature documenting the synergy between postcranial growth and the changing locomotor demands of maturing animals. Although expanded morphometric data on tail growth and behavioral data on locomotor development are required, the results of this study suggest that the adult capuchin prehensile-tail phenotype may be attributable, at least in part, to selection on juvenile performance, a possibility that deserves further attention.  相似文献   

13.

The morphology of the cranial thoracic vertebrae has long been neglected in the study of primate skeletal functional morphology. This study explored the characteristics of the third to sixth thoracic vertebrae among various positional behavioural primates. A total of 67 skeletal samples from four species of hominoids, four of cercopithecoids, and two of platyrrhines were used. Computed tomography images of the thoracic vertebrae were converted to a three-dimensional (3D) bone surface, and 104 landmarks were obtained on the 3D surface. For size-independent shape analysis, the vertebrae were scaled to the same centroid size, and the normalised landmarks were registered using the generalised Procrustes method. Principle components of shape variation among samples were clarified using the variance–covariance matrix of the Procrustes residuals. The present study revealed that the transverse processes were more dorsally positioned in hominoids compared to non-hominoids. The results showed that not only a dorsolaterally oriented but also a dorsally positioned transverse process in relation to the vertebral arch contribute to the greater dorsal depth in hominoids than in monkeys. The thoracic vertebrae of Ateles and Nasalis show relatively dorsoventrally low and craniocaudally long vertebrae with craniocaudally long zygapophyses and craniocaudally long base/short tip of the caudally oriented spinous process, accompanied by a laterally oriented and craniocaudally long base of the transverse process. Despite being phylogenetically separated, the vertebral features of Ateles (suspensory platyrrhine with its prehensile tail's aid) are similar to those of Nasalis (arboreal quadrupedal/jumping/arm-swing colobine). The morphology of the third to sixth thoracic vertebrae tends to reflect the functional adaptation in relation to positional behaviour rather than the phylogenetic characteristics of hominoids, cercopithecoids, and platyrrhines.

  相似文献   

14.
Members of the carphodactyline gekkonoid genera Naultinus, Hoplodactylus, Bavayia, Eurydactylodes, Rhacodactylus, and Pseudothecadactylus possess tails that are both prehensile and adhesive. In New Caledonian and Australian species of this group, the adhesive apparatus forms a discrete and grossly observable scansorial pad. The caudal scansorial system appears to show a phylogenetic trend towards increasing complexity. The caudal scansors closely parallel the subdigital scansors in surface morphology and bear branched setae and mechanoreceptive sensillae. Internal morphology also resembles that of the toe, although a tendinous system is absent and the mechanism of pressurization of the vascular network of the tail tip remains unclear. Despite obvious differences in basic organization of tails and toes, the caudal and digital scansors in these taxa appear to be iterative homologues of one another. J. Morphol. 235:41–58, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

15.
Direct sexual selection via mutual mate choice can result in both sexes showing conspicuous traits. We experimentally tested whether this hypothesis can explain tail length in the bearded tit (Panurus biarmicus). In this species, both sexes have a long, graduated tail. Males have, however, a longer tail than females, suggesting perhaps that females are choosier than males in selecting mates. We used two choice set‐ups for each sex: shortened vs. control tail individuals and elongated vs. control tail individuals. We found that direct sexual selection seems to operate differently in the two sexes. In both set‐ups, females spent more time with the male with the longest tail, and they also showed sexual display behaviour only towards these males. Males spent more time with control than with short‐tailed females, but they did not discriminate between control and long‐tailed females. Moreover, males displayed preference towards both short‐ and long‐tailed females. Thus, females preferred long‐tailed males, whereas males did not always prefer long‐tailed females. Our study suggests that mutual mate choice has played a role in the evolution of long tails in bearded tits. It also suggests that the sexual dimorphism in tail length has evolved because mate choice exerts a stronger sexual selection pressure on males than on females.  相似文献   

16.
Fat‐tailed sheep (Ovis aries) can survive in harsh environments and satisfy human's intake of dietary fat. However, the animals require more feed, which increases the cost of farming. Thus, most farmers currently prefer thin‐tailed, short‐tailed or docked sheep. To date, the molecular mechanism of the formation of fat tails in sheep has not been completely elucidated. Here, we conducted a genome‐wide association study using phenotypes and genotypes (the Ovine Infinium HD SNP BeadChip genotype data) of two breeds of contrasting tail types (78 Small‐tailed and 78 Large‐tailed Han sheep breeds) to identify functional genes and variants associated with fat deposition. We identified four significantly (rs416433540, rs409848439, rs408118325 and rs402128848) and three approximately associated autosomal SNPs (rs401248376, rs402445895 and rs416201901). Gene annotation indicated that the surrounding genes (CREB1, STEAP4, CTBP1 and RIP140, also known as NRIP1) function in lipid storage or fat cell regulation. Furthermore, through an X‐chromosome‐wide association analysis, we detected significantly associated SNPs in the OARX: 88–89 Mb region, which could be a strong candidate genomic region for fat deposition in tails of sheep. Our results represent a new genomic resource for sheep genetics and breeding. In addition, the findings provide novel insights into genetic mechanisms of fat deposition in the tail of sheep and other mammals.  相似文献   

17.
Adaptive Offspring Sex Ratio Depends on Male Tail Length in the Guppy   总被引:1,自引:1,他引:0  
A biased sex ratio in a brood is considered to be an adaptive strategy under certain circumstances. For example, if the expected reproductive success of one sex is greater than that of the other, parents should produce more offspring of the former sex than the latter. A previous study has documented that in the guppy, Poecilia reticulata, the female offspring of males possessing proportionally longer tails exhibit smaller body sizes and show decreased reproductive outputs than those of males having shorter tails. On the other hand, the total lengths of the male offspring of the long‐tailed males are larger because of their longer tails; consequently, they exhibit greater sexual attractiveness to females. Therefore, it has been hypothesized that this asymmetry in the expected reproductive success between the male and female offspring of long‐tailed males may result in a biased sex ratio that is dependent on the tail lengths of their fathers. This hypothesis was tested in the present study. The results showed that the females that mated with long‐tailed males produced more male offspring than those that mated with short‐tailed males. Logistic regression analysis showed that the ratio of tail length to the standard length of the fathers is a determinant factor of the sex of their offspring. These results suggest that the manipulation of the offspring sex ratios by parents enhances the overall fitness of the offspring.  相似文献   

18.
Abnormal caudal regeneration, the production of additional tails through regeneration events, occurs in lepidosaurs as a result of incomplete autotomy or sufficient caudal wound. Despite being widely known to occur, documented events generally are limited to opportunistic single observations – hindering the understanding of the ecological importance of caudal regeneration. Here we compiled and reviewed a robust global database of both peer‐reviewed and non‐peer reviewed records of abnormal regeneration events in lepidosaurs published over the last 400 years. Using this database, we qualitatively and quantitatively assessed the occurrence and characteristics of abnormal tail regeneration among individuals, among species, and among populations. We identified 425 observations from 366 records pertaining to 175 species of lepidosaurs across 22 families from 63 different countries. At an individual level, regenerations ranged from bifurcations to hexafurcations; from normal regeneration from the original tail to multiple regenerations arising from a single point; and from growth from the distal third to the proximal third of the tail. Species showing abnormal regenerations included those with intra‐vertebral, inter‐vertebral or no autotomy planes, indicating that abnormal regenerations evidently occur across lepidosaurs regardless of whether the species demonstrates caudal autotomy or not. Within populations, abnormal regenerations were estimated at a mean ± SD of 2.75 ± 3.41% (range 0.1–16.7%). There is a significant lack of experimental studies to understand the potential ecological impacts of regeneration on the fitness and life history of individuals and populations. We hypothesised that abnormal regeneration may affect lepidosaurs via influencing kinematics of locomotion, restrictions in escape mechanisms, anti‐predation tactics, and intra‐ and inter‐specific signalling. Behaviourally testing these hypotheses would be an important future research direction.  相似文献   

19.
Two contrasting patterns of lumbar vertebral morphology generally characterize anthropoids. “Long‐backed” monkeys are distinguished from “short‐backed” apes [Benton: The baboon in medical research, Vol. 2 (1967:201)] with respect to several vertebral features thought to afford greater spinal flexibility in the former and spinal rigidity in the latter. Yet, discussions of spinal mobility are lacking important functional insight that can be gained by analysis of the zygapophyses, the spine's synovial joints responsible for allowing and resisting intervertebral movements. Here, prezygapophyseal articular facet (PAF) shape in the thoracolumbar spine of Papio, Hylobates, Pongo, Gorilla, and Pan is evaluated in the context of the “long‐backed” versus “short‐backed” model. A three‐dimensional geometric morphometric approach is used to examine how PAF shape changes along the thoracolumbar vertebral column of each taxon and how PAF shape varies across taxa at corresponding vertebral levels. The thoracolumbar transition in PAF shape differs between Papio and the hominoids, between Hylobates and the great apes, and to a lesser extent, among great apes. At the level of the first lumbar vertebra, the PAF shape of Papio is distinguished from that of hominoids. At the level of the second lumbar vertebra, there is variation to some extent among all taxa. These findings suggest that morphological and functional distinctions in primate vertebral anatomy may be more complex than suggested by a “long‐backed” versus “short‐backed” dichotomy. Am J Phys Anthropol 142:600–612, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

20.
The black nuptial plumage of the highly polygynous male red‐collared widowbird (Euplectes ardens) comprises a red carotenoid‐based collar patch and a long graduated tail (c. 22 cm). Tail length was the strongest predictor of male mating success in a previous selection analysis, motivating this experimental test of the relative importance of tail plumes in male contest competition and female choice. Males were assigned to either a short (12.5 cm) or control (20 cm) tail manipulation prior to territory establishment. Male contest competition was unaffected by the tail treatments as the shortened‐ and control‐tailed males were equally successful in acquiring territories of similar size and quality. In contrast, however, although the longer‐tailed control males spent less time in flight and courtship displays, they attracted significantly more prospecting and nearly three times as many nesting females to their territories compared to the short‐tailed males. In further support of tail length as the primary mate choice cue, none of the other measured and potential female cues (e.g. body size, collar colorimetrics, territorial behaviours or territory quality) influenced male reproductive success. In addition to potentially increasing detectability (‘signal efficacy’), the long tail is also a likely indicator of male quality (‘signal content’). Despite the higher activities of short‐tailed males, control‐tailed males showed a steeper decline in condition (relative body mass) during the breeding season. Furthermore, both short‐ and control‐tailed residents lost more condition than did the short‐ and control‐treated floaters (males not establishing territories), suggesting an interaction between tail length and the costs of territory acquisition, defence and courtship displays. These results confirm the role of mate choice and honest quality advertising as the main selection pressures behind elongated tails in widowbirds. © 2005 The Linnean Society of London, Biological Journal of the Linnean Society, 2005, 86 , 35–43.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号