首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The morphology and development of the multiple lateral line canals (canals 1–5 in dorsal to ventral sequence) on the trunk of two representative hexagrammids, Hexagrammos decagrammus and H. stelleri, were studied using histological and cleared and stained material. The morphology of the lateral line scales of which the lateral line canals are composed and the distribution of canal neuromasts within them were described quantitatively. We hypothesized that 1) one neuromast is contained in each lateral line scale and all five canals contain neuromasts, 2) all five canals develop similarly, and 3) the multiple trunk canals are an adaptation for the alteration of lateral line function. Lateral line scale morphology was found to be similar among the five canals in Hexagrammos decagrammus and H. stelleri. However, canal 3 is significantly wider than the other four canals. It is the only one of the five canals connected to the canals on the head, and more significantly, it is the only one of the five canals that contains neuromasts. The lateral line scales that comprise all five lateral line canals show the same pattern of development whether or not they contain neuromasts. The five canals develop asynchronously, and each of the canals develops either rostro-caudally or caudo-rostrally. Canal 3 is the homologue of a single trunk canal in other teleosts; canals 1, 2, 4, and 5 are apomorphic features of the two species of Hexagrammos. Canals 1, 2, 4, and 5 cannot be functional components of the lateral line system because they do not contain neuromasts and thus cannot be adaptations for the alteration of lateral line function. The occurrence of lateral line canals lacking neuromasts demands a direct assessment of neuromast distributions in the lateral line canals among fishes. Finally, our data suggest that the putative role of neuromasts in the morphogenesis of lateral line canals and the nature of neuromast-bone relationships need to be critically reevaluated. J. Morphol. 233:195–214, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

2.
The relatively simple structural organization of the cranial lateral line system of bony fishes provides a valuable context in which to explore the ways in which variation in post‐embryonic development results in functionally distinct phenotypes, thus providing a link between development, evolution, and behavior. Vital fluorescent staining, histology, and scanning electron microscopy were used to describe the distribution, morphology, and ontogeny of the canal and superficial neuromasts on the head of two Lake Malawi cichlids with contrasting lateral line canal phenotypes (Tramitichromis sp. [narrow‐simple, well‐ossified canals with small pores] and Aulonocara stuartgranti [widened, more weakly ossified canals with large pores]). This work showed that: 1) the patterning (number, distribution) of canal neuromasts, and the process of canal morphogenesis typical of bony fishes was the same in the two species, 2) two sub‐populations of neuromasts (presumptive canal neuromasts and superficial neuromasts) are already distinguishable in small larvae and demonstrate distinctive ontogenetic trajectories in both species, 3) canal neuromasts differ with respect to ontogenetic trends in size and proportions between canals and between species, 4) the size, shape, configuration, physiological orientation, and overall rate of proliferation varies among the nine series of superficial neuromasts, which are found in both species, and 5) in Aulonocara, in particular, a consistent number of canal neuromasts accompanied by variability in the formation of canal pores during canal morphogenesis demonstrates independence of early and late phases of lateral line development. This work provides a new perspective on the contributions of post‐embryonic phases of lateral line development and to the generation of distinct phenotypes in the lateral line system of bony fishes. J. Morphol. 277:1273–1291, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

3.
Cranial osteology, canal neuromast distribution, superficial neuromast distribution and innervation, and cephalic pore structure were studied in cleared and stained specimens of the deep sea brotulid Cataetyx rubrirostris. The cranial bone structure of C. rubrirostris is similar to other brotulids (Dicrolene sp.) and zoarcids (Zoarces sp.), except for an unusual amount of overlapping of the bones surrounding the cranial vault. The superficial neuromasts are innervated by the anterodorsal, anteroventral, middle and posterior lateral line nerves and are organized similarly to those of the blind ophidioid cave fish Typhliasina pearsei. The cephalic pores open into a widened lateral line canal system. The canal is compartmentalized into a series of neuromast‐containing chambers that probably amplify signals received by the system. J. Morphol. 241:265–274, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

4.
The development of two of the cranial lateral line canals is described in the cichlid, Archocentrus nigrofasciatus. Four stages of canal morphogenesis are defined based on histological analysis of the supraorbital and mandibular canals. "Canal enclosure" and "canal ossification" are defined as two discrete stages in lateral line canal development, which differ in duration, an observation that has interesting implications for the ontogeny of lateral line function. Canal diameter in the vicinity of individual neuromasts begins to increase before ossification of the canal roof in each canal segment; this increase in canal diameter is accompanied by an increase in canal neuromast size. The mandibular canal generally develops later than the supraorbital canal in this species, but in both of these canals development of the different canal segments contained within a single dermal bone is asynchronous. These observations suggest that a dynamic process requiring integration and interaction among different tissues, in both space and time, underlies the development of the cranial lateral line canal system. The supraorbital and mandibular canals appear to demonstrate a "one-component" pattern of development in Archocentrus nigrofasciatus, where the walls of each canal segment grow up from the underlying dermal bone and then fuse to form the bony canal roof. This is contrary to numerous published reports that describe a "two-component" pattern of development in teleosts where the bony canal ossifies separately and then fuses with an underlying dermal bone. A survey of the literature in which lateral line canal development is described using histological analysis suggests that the occurrence of two different patterns of canal morphogenesis ("one-component" and "two-component") may be due to phylogenetic variation in the pattern of the development of the lateral line canals.  相似文献   

5.
The lateral line system displays highly divergent patterns in adult teleost fish. The mechanisms underlying this variability are poorly understood. Here, we demonstrate that the lateral line mechanoreceptor, the neuromast, gives rise to a series of accessory neuromasts by a serial budding process during postembryonic development in zebrafish. We also show that accessory neuromast formation is highly correlated to the development of underlying dermal structures such as bones and scales. Abnormalities in opercular bone morphogenesis, in endothelin 1-knockdown embryos, are accompanied by stereotypic errors in neuromast budding and positioning, further demonstrating the tight correlation between the patterning of neuromasts and of the underlying dermal bones. In medaka, where scales form between peridermis and opercular bones, the lateral line displays a scale-specific pattern which is never observed in zebrafish. These results strongly suggest a control of postembryonic neuromast patterns by underlying dermal structures. This dermal control may explain some aspects of the evolution of lateral line patterns.  相似文献   

6.
The lateral line system and its innervation were examined in two species of the family Apogonidae (Cercamia eremia [Apogoninae] and Pseudamia gelatinosa [Pseudamiinae]). Both species were characterized by numerous superficial neuromasts (SNs; total 2,717 in C. eremia; 9,650 in P. gelatinosa), including rows on the dorsal and ventral halves of the trunk, associated with one (in C. eremia) and three (in P. gelatinosa) reduced trunk canals. The pattern of SN innervation clearly demonstrated that the overall pattern of SN distribution had evolved convergently in the two species. In C. eremia, SN rows over the entire trunk were innervated by elongated branches of the dorsal longitudinal collector nerve (DLCN) anteriorly and lateral ramus posteriorly. In P. gelatinosa, the innervation pattern of the DLCN was mirrored on the ventral half of the trunk (ventral longitudinal collector nerve: VLCN). Elongated branches of the DLCN and VLCN innervated SN rows on the dorsal and ventral halves of the trunk, respectively. The reduced trunk canal(s) apparently had no direct relationship with the increase of SNs, because these branches originated deep to the lateral line scales, none innervating canal neuromast (CN) homologues on the surface of the scales. In P. gelatinosa, a CN (or an SN row: CN homologue) occurred on every other one of their small lateral line scales, while congeners (P. hayashii and P. zonata) had an SN row (CN homologue) on every one of their large lateral line scales.  相似文献   

7.
The structure and ontogeny of lateral‐line canals in the Rock Prickleback, Xiphister mucosus, were studied using cleared‐and‐stained specimens, and the distribution and morphology of neuromasts within lateral‐line canals were examined using histology. X. mucosus has seven cephalic canals in a pattern that, aside from four branches of the infraorbital canals, is similar to that of most teleostean fishes. Unlike most other teleosts, however, X. mucosus features multiple trunk lateral‐line canals. These include a short median posterior extension of the supratemporal canal and three paired, branching canals located on the dorsolateral, mediolateral, and ventrolateral surfaces. The ventrolateral canal (VLC) includes a loop across the ventral surface of the abdomen. All trunk canals, as well as the branches of the infraorbitals, are supported by small, dermal, ring‐like ossifications that develop independently from scales. Trunk canals develop asynchronously with the mediodorsal and dorsolateral canals (DLC) developing earliest, followed by the VLC, and, finally, by the mediolateral canal (MLC). Only the mediodorsal and DLC connect to the cephalic sensory canals. Fractal analysis shows that the complexity of the trunk lateral‐line canals stabilizes when all trunk canals develop and begin to branch. Histological sections show that neuromasts are present in all cephalic canals and in the DLC and MLC of the trunk. However, no neuromasts were identified in the VLC or its abdominal loop. The VLC cannot, therefore, directly function as a part of the mechanosensory system in X. mucosus. The evolution and functional role of multiple lateral‐line canals are discussed. J. Morphol. 276:1218–1229, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

8.
The lateral line system of teleost fishes consists of an array of superficial and canal neuromasts (CN). Number and distribution of neuromasts and the morphology of the lateral line canals vary across species. We investigated the morphology of the lateral line system in four diurnal European cyprinids, the limnophilic bitterling (Rhodeus sericeus), the indifferent gudgeon (Gobio gobio), and ide (Leuciscus idus), and the rheophilic minnow (Phoxinus phoxinus). All fish had lateral line canals on head and trunk. The total number of both, CN and superficial neuromasts (SN), was comparable in minnow and ide but was greater than in gudgeon and bitterling. The ratio of SNs to CNs for the head was comparable in minnow and bitterling but was greater in gudgeon and ide. The SN‐to‐CN ratio for the trunk was greatest in bitterling. Polarization of hair cells in CNs was in the direction of the canal. Polarization of hair cells in SNs depended on body area. In cephalic SNs, hair cell polarization was dorso‐ventral or rostro‐caudal. In trunk SNs, it was rostro‐caudal on lateral line scales and dorso‐ventral on other trunk scales. On the caudal fin, hair cell polarization was rostro‐caudal. The data show that, in the four species studied here, number, distribution, and orientation of CNs and SNs cannot be unequivocally related to habitat. J. Morphol. 275:357–370, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

9.
We have examined the embryonic development of the major neuromast lines of the lateral-line system in the urodele Ambystoma mexicanum both in vivo (using microsurgical techniques to transplant placodes) and in preserved embryos using scanning electron microscopy (SEM). We have compared this to SEM observations of embryos of the anuran Rana pipiens. We have determined the approximate locations of the lateral-line placodes in A. mexicanum and the approximate timing of both the migration of the lateral line primordia and the neuromast eruption in both species. We find that, at hatching, all primary neuromasts are present and fully formed in Ambystoma, while migration of the primordia is just beginning in Rana. The neuromast systems in both species are fully formed by the time feeding begins. If neuromast eruption is considered in relation to developmental events other than hatching, fewer differences are found between species, suggesting that hatching is precocious in Rana. We find no evidence of heterochrony to account for the morphological differences observed in these lateral-line systems. Orthogonal neuromasts on the head, a derived feature of urodeles, appears to be the result of lateral neuromast movement subsequent to the rostral migration of the primordia. This process was not observed in the anuran. In addition, we observe that ciliated epidermal cells disappear from the area immediately around each of the lines and suggest that neuromasts cause the regression of cilia in their immediate vicinity.  相似文献   

10.
The relationship between morphology of the mechanosensory lateral line system and behavior is essentially unknown in elasmobranch fishes. Gross anatomy and spatial distribution of different peripheral lateral line components were examined in several batoids (Raja eglanteria, Narcine brasiliensis, Gymnura micrura, and Dasyatis sabina) and a bonnethead shark, Sphyrna tiburo, and are interpreted to infer possible behavioral functions for superficial neuromasts, canals, and vesicles of Savi in these species. Narcine brasiliensis has canals on the dorsal surface with 1 pore per tubule branch, lacks a ventral canal system, and has 8–10 vesicles of Savi in bilateral rows on the dorsal rostrum and numerous vesicles ( = 65 ± 6 SD per side) on the ventral rostrum. Raja eglanteria has superficial neuromasts in bilateral rows along the dorsal body midline and tail, a pair anterior to each endolymphatic pore, and a row of 5–6 between the infraorbital canal and eye. Raja eglanteria also has dorsal canals with 1 pore per tubule branch, pored and non-pored canals on the ventral surface, and lacks a ventral subpleural loop. Gymnura micrura has a pored dorsal canal system with extensive branch patterns, a pored ventral hyomandibular canal, and non-pored canal sections around the mouth. Dasyatis sabina has more canal pores on the dorsal body surface, but more canal neuromasts and greater diameter canals on the ventral surface. Sphyrna tiburo has primarily pored canals on both the dorsal and ventral surfaces of the head, as well as the posterior lateral line canal along the lateral body surface. Based upon these morphological data, pored canals on the dorsal body and tail of elasmobranchs are best positioned to detect water movements across the body surface generated by currents, predators, conspecifics, or distortions in the animal's flow field while swimming. In addition, pored canals on the ventral surface likely also detect water movements generated by prey. Superficial neuromasts are protected from stimulation caused by forward swimming motion by their position at the base of papillar grooves, and may detect water flow produced by currents, prey, predators, or conspecifics. Ventral non-pored canals and vesicles of Savi, which are found in benthic batoids, likely function as tactile or vibration receptors that encode displacements of the skin surface caused by prey, the substrate, or conspecifics. This mechanotactile mechanism is supported by the presence of compliant canal walls, neuromasts that are enclosed in wide diameter canals, and the presence of hair cells in neuromasts that are polarized both parallel to and nearly perpendicular to the canal axis in D. sabina. The mechanotactile, schooling, and mechanosensory parallel processing hypotheses are proposed as future directions to address the relationships between morphology and physiology of the mechanosensory lateral line system and behavior in elasmobranch fishes.  相似文献   

11.
A study of neuromast ontogeny and lateral line canal formation in Oreochromis aureus and Cichlasoma nigrofasciatum reveals the existence of two classes of neuromasts: those that arise just before hatching (presumptive canal neuromasts, dorsal superficial neuromasts, gap neuromasts, and caudal fin neuromasts) and pairs of neuromasts that arise on each lateral line scale lateral to each canal segment at the same time as canal formation. In the anterior trunk canal segment, each presumptive canal neuromast is accompanied by a dorsoventrally oriented superficial neuromast forming an orthogonal neuromast pair. It is suggested that each of these dorsoventrally oriented superficial neuromasts is homologous to the transverse superficial neuromast row described by Münz (Zoomorphology 93:73-86, '79) in other cichlids. It is further suggested that the longitudinal lines described by Münz (Zoomorphology 93:73-86, '79) are derived from the pair of superficial neuromasts that arise during canal formation. Distinct changes in neuromast topography are documented. Neuromast formation, scale formation, and lateral line canal formation are three distinct and sequential processes. The distribution of neuromasts is correlated with myomere configuration; there is always one presumptive canal neuromast on each myomere. A single scale forms beneath each presumptive canal neuromast. Canal segment formation is initiated with the enclosure of each presumptive canal neuromast by an epithelial bridge which later ossifies. The distinction of these three processes raises questions as to the causal relationships among them.  相似文献   

12.
Ontogeny and phylogeny of the trunk lateral line system in cichlid fishes   总被引:1,自引:0,他引:1  
An examination of the ontogeny of the lateral line trunk canal and the diversity of adult trunk canal patterns among cichlids indicates that bidirectional canal formation is a general ontogenetic pattern in the Cichlidae with the exception of Cichla and those few species with a complete trunk canal pattern. In addition to the tubed scales which make up the trunk canal, some lateral line scales have pits containing superficial neuromasts. These are recognized as components of the lateral line system of the trunk in adult cichlids for the first time. Eight trunk canal patterns that are variations on a simple disjunct pattern are defined among the 17 cichlid genera examined. Using bidirectional canal formation as a developmental model, these patterns can be placed along an ontogenetic spectrum. This suggests that heterochrony (alterations in the timing of development) is an important mechanism of evolutionary change in the lateral line system of the trunk in cichlid fishes.  相似文献   

13.
A new species of Eigenmannia is described from the Rio Paraná (the Grande, Paranapanema and Tietê basins). This new species is distinguished from all congeners by colouration pattern, position of the mouth, relative depth of posterodorsal expansion on infraorbitals 1 + 2, number of teeth, osteological features, number of rows of scales above lateral line (LL) and morphometric data. Comments on the widened cephalic lateral-line canals of Sternopygidae and a dichotomous key to the species of Eigenmannia from the Rio Paraná Basin are provided.  相似文献   

14.
Previous studies comparing bony labyrinth morphology in geographically‐dispersed samples of Neandertals and modern Homo sapiens (H. sapiens) showed that Neandertals generally have smaller semicircular canals than modern H. sapiens (Hublin et al., 1996 ; Spoor et al., 2003 ; Glantz et al., 2008 ). Here we analyze the morphology of a single group of Neandertal specimens from one locale, the Krapina site, to determine the intraspecific variation in Neandertal semicircular canal sizes. Dimensions of the semicircular canals were collected from computed tomography scans of nine temporal bones. With the rare exception, the dimensions of the semicircular canals in the Krapina sample are similar to those previously reported across a geographically‐dispersed sample of Neandertals, further supporting previous studies that suggest low levels of variation in the semicircular canals for Neandertals. Am J Phys Anthropol 154:302–306, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

15.
We investigated how single units in the medial octavolateralis nucleus of the rainbow trout, Oncorhynchus mykiss, respond to a 50-Hz vibrating sphere in still and running water. Four types of units were distinguished. Type MI units (N=16) were flow-sensitive; their ongoing discharge rates either increased or decreased in running water, and as a consequence, responses of these units to the vibrating sphere were masked if the fish was exposed to water flow. Type MII units (N=7) were not flow-sensitive; their ongoing discharge rates were comparable in still and running water, and thus their responses to the vibrating sphere were not masked. Type MIII units (N=7) were also not flow-sensitive; nevertheless, their responses to the vibrating sphere were masked in running water. Type MIV units (N=14) were flow-sensitive, but their responses to the vibrating sphere were not masked. Our data confirm previous findings in the goldfish, Carassius auratus, indicating that the organization of the peripheral lateral line is reflected to a large degree in the medial octavolateralis nucleus. We compare data from goldfish and trout and discuss differences with respect to lateral line morphology, lifestyle and habitat of these species.Abbreviations CN canal neuromast - MON medial octavolateralis nucleus - SN superfical neuromast - a.c. alternating current - d.c. direct current  相似文献   

16.
Entire sensory canal systems of the coelacanth, Latimeria chalumnae, are described: not only the course of principal canals with their primary and secondary collaterals, but also the course and branches of the pit-line and reticular canals. The number of pores on the left side of the head were found to be 296 in an early (yolksac) embryo, 321 in a late term fetus, 485 in a juvenile, and 2974 in adults. This means that in latimeria most of the lateral-line canal system develop after parturition. Pit lines of the living coelacanth are not rows of superficial neuromasts but canals covered by a thin epidermis like in other sensory canals of the lateral line. These pit-line canals, however, have a very specific structure and branching pattern: the medial dorsal pit-line canal is connected by fine branches on top of the head. The infra-dentary pit-line canal connects via these branches with canals deep inside the bones. Several fine and richly branched canaliculi of unknown function radiate from each quadratojugal pit-line canal. The gular plate pit-line canal has superficially branching arms as well as connections to numerous deeper canals inside the bone. These canals consist of fine branches that in turn lead to and open on the ventral surface of the gular plates as small pores. The system is reminiscent of the reticular (pore) canal system known only from some fossil agnathans and fishes. Thus latimeria combines the reticular system of ancient vertebrates with the lateral-line system of modern fishes. The significance of this gular (possibly electro-sensory) system for feeding by the coelacanth will be discussed.  相似文献   

17.
Parapercis colias (blue cod) and Cheimarrichthys fosteri (torrentfish) are two members of the family Pinguipedidae. They reside in habitats with different background levels of hydrodynamic activity and differ in their feeding ecology. The peripheral morphology of the mechanosensory lateral line system was investigated in each species. The torrentfish is the only freshwater member of this otherwise exclusively marine family. It resides in turbulent fast flowing habitats and feeds nocturnally on stream drift. Torrentfish have many superficial neuromasts and a simple unbranched canal system. In comparison the blue cod resides in sub-tidal slow flowing habitats, is a diurnal predator and has relatively few superficial neuromasts and a well-developed branching canal system. For these two species the background level of hydrodynamic activity does not appear to be the dominant selection pressure on lateral line morphology, in the case of the torrentfish in particular it is more compelling to view lateral line morphology in the light of environmental pressures that have favoured the evolution of nocturnal feeding.  相似文献   

18.
西伯利亚鲟仔鱼侧线系统的发育   总被引:1,自引:0,他引:1  
Song W  Song JK 《动物学研究》2012,33(3):261-270
鲟鱼属软骨硬鳞鱼,在电感受器的进化中占据着极为重要的地位。该文以光镜和扫描电镜手段研究了西伯利亚鲟侧线系统早期发育,包括侧线基板发育及感觉嵴的形成、侧线感受器的发育和侧线管道的形成。1日龄,听囊前后外胚层增厚区域出现6对侧线基板;除后侧线基板细胞向躯干侧面迁移外,其他侧线基板均形成感觉嵴结构;每一侧线基板中均有神经丘原基形成。7日龄,壶腹器官在吻部腹面两侧出现,壶腹器官的发育比神经丘晚一周左右。9日龄,神经丘下的表皮略有凹陷,侧线管道开始形成。29日龄,在吻部腹面两侧可见少数个别的壶腹器官表皮细胞覆盖壶腹器官中央区域留下3~4个小的开口;壶腹管内可见大量的微绒毛存在,在其他鲟形目鱼类、软骨鱼类中也存在类似的结构。57日龄,躯干侧线管道已完全埋于侧骨板中;壶腹器官主要分布在吻部腹面,3~4个聚集在一起,呈"梅花状",分布紧密,并且该部分皮肤表面凹陷,形成花朵状凹穴;侧线系统发育完善。  相似文献   

19.
The distribution and ultrastructure of the lateral line systems in three taxonomically dispersed deep-sea fish are described: Poromitra capito, Melanonus zugmayeri and Phrynichthys wedli. They are meso- to bathpelagic and are thought to feed on small crustaceans and fish. All possess highly developed lateral line systems, a feature associated with life in the deep sea. Poromitra capito and M. zugmayeri exhibit widened head canals which are connected to the outside by large pores and which contain around 60 large neuromasts. Each neuromast consists of a cupula, shield-shaped mantle and a sensory plate containing hundreds to thousands of hair cells. Direction of sensitivity is in the long axis of the canal (perpendicular to the long axis of the mantle). Depending on their position on the sensory plate, the hair cells have different morphologies. They fall into three basic classes which, from comparison with past work, may be tuned to different frequencies. Alternatively, the various hair cell morphologies could be interpreted as being members of a developmental or growth sequence. Phrynichthys wedli has no canal organs, these being replaced secondarily by many superficial neuromasts placed on prominent papillae in rows which cover much of the 'head' and body. Direction of sensitivity is along the axis of the neuromast row. An extreme proliferation of superficial neuromasts are also found on the heads of P. capito and M. zugmayeri and these are of a type not described before. They consist of stitches, raised on papillae in M. zugmayeri and several mm long in P. capito , in which continuous lines of hair cells, two to three cells wide, are embedded. Direction of sensitivity is perpendicular to the long axis of the stitch. Based on the structure and direction of sensitivity, possible functional implications of all the neuromast types described are compared and discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号